流/批/OLAP 一体的 Flink 引擎介绍|青训营笔记

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: Apache Flink 是一个框架和分布式处理引擎,用于在无边界和有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。

课程资料

完整手册:https://bytedance.feishu.cn/docx/doxcnECGEFkCKYqbxaDipK1qrVf

学员手册:https://juejin.cn/post/7122754431371706404#heading-14

课程链接:https://live.juejin.cn/4354/yc_OLAP

课件PPT:https://bytedance.feishu.cn/file/boxcni8teJOjd4vUsgxn8rL0ylc

一、Flink概述

Apache Flink 是一个框架分布式处理引擎,用于在无边界有边界数据流上进行有状态的计算。Flink 能在所有常见集群环境中运行,并能以内存速度和任意规模进行计算。

Apache Flink 功能强大,支持开发和运行多种不同种类的应用程序。它的主要特性包括:批流一体化、精密的状态管理、事件时间支持以及精确一次的状态一致性保障等。

Flink 不仅可以运行在包括 YARN、 Mesos、Kubernetes 在内的多种资源管理框架上,还支持在裸机集群上独立部署。在启用高可用选项的情况下,它不存在单点失效问题。

image-20220727144942190

推荐阅读

  1. 大数据十年回顾:浪潮之巅数英雄大数据宋词_InfoQ精选文章
  1. 大数据技术简介 - 掘金
  1. 大数据Hadoop之--实时计算流计算引擎Flink(Flink环境部署) - 掘金
  1. 现代流式计算的基石:Google DataFlow
  1. Apache Flink: What is Apache Flink? - Architecture
  1. Streaming 101: The world beyond batch(A high-level tour of modern data-processing concepts)
  1. Streaming 102: The world beyond batch(The what, where, when, and how of unbounded data processing)

二、Flink整体架构

2.1 分层架构

image-20220727165952593

  • SDK层:Flink的SDK主要有三类,SQL/Table、DataStream、Python
  • 执行引擎层(runtime层):执行引擎层提供了统一的DAG,用来描述数据处理的Pipeline,不管是流还是批,都会转化为DAG图,调度层再把DAG图转化成分布式环境下的Task,Task之间通过Shuffle传输数据
  • 状态存储层:负责存储算子的状态信息
  • 资源调度层:目前Flink可以支持部署在多种环境

2.2 总体架构

image-20220727170610863

  • Dispatcher:接收作业,拉起JobManager来执行作业,并在JobMaster挂掉之后恢复作业
  • JobMaster:管理一个job的整个生命周期(调度task、触发协调task做checkpoint、协调容错恢复等),会向ResourceManager申请slot,并将task调度到对应的TM上
  • TaskManager(TM):负责执行一个DataFlow Graph和各个task以及data streams的buffer和数据交换
  • ResourceManager:负责slot资源的管理和调度,TaskManager拉起之后会向RM注册

2.3 工作示例(Dataflow Model)

流式的WordCount示例,从kafka中读取一个实时的数据流,每10秒统计一次单词出现的次数,DataStream实现的代码如下:

image-20220727171845034

将业务逻辑转化为Streaming DataFlow Graph(假设作业的sink算子并发为1,其余算子的并发为2)

image-20220727172059156

为了更高效地分布式执行,Flink会尽可能地将不同的operator链接在一起形成Task,这样每个Task可以在一个线程中执行,内部叫做OperatorChain。如下图的source和map算子可以Chain在一起

image-20220727172602481

最后将上面的Task调度到具体的TaskManager中的slot中执行,一个slot只能运行同一个task的subTask

image-20220727172750685

2.4 Flink如何做到流批一体

站在 Flink 的角度,Everything is Streams,无边界数据集是一种数据流,一个无边界的数据流可以按时间切段成一个个有边界的数据集,所以有界数据集(批式数据)也是一种数据流。

因此,不管是有边界的数据集(批式数据)还是无边界数据集,Flink 都可以天然地支持,这是 Flink 支持流批一体的基础。并且 Flink 在流批一体上,从上面的 API 到底层的处理机制都是统一的,是真正意义上的流批一体。

  • Apache Flink 主要从以下几个模块来做流批一体:

    • SQL 层
    • DataStream API 层统一,批和流都可以使用 DataStream API 来开发
    • Scheduler 层架构统一,支持流批场景
    • Failover Recovery 层 架构统一,支持流批场景
    • Shuffle Service 层架构统一,流批场景选择不同的 Shuffle Service

image-20220727175635906

  • 流批一体的 Scheduler 层:

    • Scheduler 主要负责将作业的 DAG 转化为在分布式环境中可以执行的 Task
    • 1.12 之前的 Flink 版本,Flink 支持两种调度模式:

      • EAGER(Streaming 场景):申请一个作业所需要的全部资源,然后同时调度这个作业的全部 Task,所有的 Task 之间采取 Pipeline 的方式进行通信
      • LAZY(Batch 场景):先调度上游,等待上游产生数据或结束后再调度下游,类似 Spark 的 Stage 执行模式
  • 流批一体的 Shuffle Service 层:

    • Shuffle:在分布式计算中,用来连接上下游数据交互的过程叫做 Shuffle。实际上,分布式计算中所有涉及到上下游衔接的过程,都可以理解为 Shuffle
    • Shuffle 分类:

      • 基于文件的 Pull Based Shuffle,比如 Spark 或 MR,它的特点是具有较高的容错性,适合较大规模的批处理作业,由于是基于文件的,它的容错性和稳定性会更好一些
      • 基于 Pipeline 的 Push Based Shuffle,比如 Flink、Storm、Presto 等,它的特点是低延迟和高性能,但是因为 shuffle 数据没有存储下来,如果是 batch 任务的话,就需要进行重跑恢复
    • 流和批 Shuffle 之间的差异:

      • Shuffle 数据的生命周期:流作业的 Shuffle 数据与 Task 是绑定的,而批作业的 Shuffle 数据与 Task 是解耦的
      • Shuffle 数据存储介质:流作业的生命周期比较短、而且流作业为了实时性,Shuffle 通常存储在内存中,批作业因为数据量比较大以及容错的需求,一般会存储在磁盘里
      • Shuffle 的部署方式:流作业 Shuffle 服务和计算节点部署在一起,可以减少网络开销,从而减少 latency,而批作业则不同
    • Pluggable Shuffle Service:

      • Flink 的目标是提供一套统一的 Shuffle 架构,既可以满足不同 Shuffle 在策略上的定制,同时还能避免在共性需求上进行重复开发

image-20220727181233051

推荐阅读

  1. 本地跑一个Flink Job:First stepsIntro to the DataStream APILearn Flink Overview
  2. DataFlow Model 设计思想:现代流式计算的基石:Google DataFlow
  1. Flink Architecture
  1. Glossary
  1. Deployment Overview
  1. Jobs and Scheduling
  1. 一文读懂Apache Flink技术 - 掘金
  1. Flink入门宝典(详细截图版) - 掘金

三、Flink架构优化

3.1 流/批/OLAP业务场景概述

  • 三种业务场景的特点

image-20220727202810869

  • 三种业务场景面临的挑战

image-20220727203142886

3.2 为什么三种场景可以使用一套引擎解决

  • 批式计算是流式计算的特例,Everything is Streams,有界数据集(批式数据)也是一种数据流、一种特殊的数据流;
  • OLAP 计算是一种特殊的批式计算,它对并发和实时性要求更高,其他情况与普通批式作业没有特别大区别。

3.3 Flink如何支持OLAP场景

image-20220727204153588

  • Client:提交 SQL Query;
  • Gateway:接收 Client 提交的 SQL Query,对 SQL 进行语法解析和查询优化,生成 Flink 作业执行计划,提交给 Session 集群;
  • Session Cluster:执行作业调度及计算,并返回结果。

    • JobManager 管理作业的执行,在接收到 Gateway 提交过来的作业逻辑执行计划后,将逻辑执行计划转换为物理执行计划,为每个物理计算任务分配资源,将每个计算任务分发给不同的 TaskManager 执行,同时管理作业以及每个计算任务执行状态;
    • TaskManager执行具体的计算任务,采用线程模型,为每个计算任务创建计算线程,根据计算任务的上下游数据依赖关系跟上游计算任务建立/复用网络连接,向上游计算任务发送数据请求,并处理上游分发给它的数据。

推荐阅读

  1. OLAP技术选型思路总结,你绕不开的“不可能三角”关二爷大数据笔记InfoQ写作社区
  1. 字节跳动的 Flink OLAP 作业调度和查询执行优化实践 - 掘金
相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
2月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
1423 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
8天前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
2月前
|
SQL 流计算 关系型数据库
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
482 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
|
3月前
|
存储 数据采集 大数据
Flink实时湖仓,为汽车行业数字化加速!
本文由阿里云计算平台产品专家李鲁兵(云觉)分享,聚焦汽车行业大数据应用。内容涵盖市场趋势、典型大数据架构、产品市场地位及能力解读,以及典型客户案例。文章详细介绍了新能源汽车市场的快速增长、大数据架构分析、实时湖仓方案的优势,以及Flink和Paimon在车联网中的应用案例。
208 8
Flink实时湖仓,为汽车行业数字化加速!
|
2月前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
78 1
|
4月前
|
存储 数据采集 OLAP
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
饿了么的实时数仓经历了多个阶段的演进。初期通过实时ETL、报表应用、联动及监控构建基础架构,随后形成了涵盖数据采集、加工和服务的整体数据架构。1.0版本通过日志和Binlog采集数据,但在研发效率和数据一致性方面存在问题。2.0版本通过Dataphin构建流批一体化系统,提升了数据一致性和研发效率,但仍面临新业务适应性等问题。最终,饿了么选择Paimon和StarRocks作为实时湖仓方案,显著降低了存储成本并提高了系统稳定性。未来,将进一步优化带宽瓶颈、小文件问题及权限控制,实现更多场景的应用。
462 7
饿了么基于Flink+Paimon+StarRocks的实时湖仓探索
|
3月前
|
存储 运维 监控
实时计算Flink版在稳定性、性能、开发运维、安全能力等等跟其他引擎及自建Flink集群比较。
实时计算Flink版在稳定性、性能、开发运维和安全能力等方面表现出色。其自研的高性能状态存储引擎GeminiStateBackend显著提升了作业稳定性,状态管理优化使性能提升40%以上。核心性能较开源Flink提升2-3倍,资源利用率提高100%。提供一站式开发管理、自动化运维和丰富的监控告警功能,支持多语言开发和智能调优。安全方面,具备访问控制、高可用保障和全链路容错能力,确保企业级应用的安全与稳定。
56 0
|
5月前
|
SQL 关系型数据库 MySQL
实时数仓 Hologres操作报错合集之Flink CTAS Source(Mysql) 表字段从可空改为非空的原因是什么
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
5月前
|
搜索推荐 OLAP 流计算
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
OneSQL OLAP实践问题之基于 Flink 打造流批一体的数据计算平台如何解决
69 1
|
5月前
|
SQL 存储 OLAP
OneSQL OLAP实践问题之Flink SQL Gateway的功能如何解决
OneSQL OLAP实践问题之Flink SQL Gateway的功能如何解决
56 1

热门文章

最新文章