基于NSGAII算法的峰谷分时电价引导下的电动汽车充电负荷优化研究附Matlab代码

简介: 基于NSGAII算法的峰谷分时电价引导下的电动汽车充电负荷优化研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在研究电动汽车用户充电需求的前提下,利用蒙特卡洛方法对2种不同充电方式进行模拟并对其进行分析;分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基础上,用实际案例对模型进行验证,利用多目标优化遗传算法进行求解,验证峰谷分时电价对电网负荷优化的有效性.

遗传算法是受达尔文的进化论以及孟德尔的遗传学说影响,模仿自然界生物种群进化机制而发展起来的随机全局搜索方法和优化方法,特点是高效、并行、全局搜索。采用适者生存的原则,利用某种编码技术,通过适应度函数寻找新的近似解,在这个过程中导致了种群中个体的进化,使得种群比之前更能适应环境,就像自然界的改造[11]。该文涉及多目标和多约束的优化问题,当需要多个目标在区域内达到最优时,有时目标会相互冲突,对于求解此类问题的 Pareto最优解有以下常用的几种方法:权重系数变换法,给每个子目标函数赋予权重系数后转变为单目标优化问题;并列选择法,将群体所有个体按照子目标函数划分子群体,各自选出适应度高的个体以得到新的子群体,再将其合并,不断进行 至 最 大 次 数,最 终 得 到 多 目 标 优 化 的Pareto最优解。由于权重系数分配问题会得到不同的结果可能导致得到与实际情况相偏差的解,故该文采用并列选择法。

⛄ 部分代码


function f  = genetic_operator(parent_chromosome, M, V, mu,mum, l_limit, u_limit)

[N,m] = size(parent_chromosome);%N是交配池中的个体数量

%clear m

p = 1;

%下面代码找出交配池中非支配等级的最大值和最小值 为自适应概率计算做准备


pc=0.9;

pm=0.1;

%%首先进行交叉工作

for i = 1 : N%这里虽然循环N次,但是每次循环都会有概率产生2个子代,所以最终产生的子代个体数量是2N个

       child_1 = [];

       child_2 = [];

       parent_1 = round(N*rand(1));

       if parent_1 < 1

           parent_1 = 1;

       end

       parent_2 = round(N*rand(1));

       if parent_2 < 1

           parent_2 = 1;

       end

       while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))

           parent_2 = round(N*rand(1));

           if parent_2 < 1

               parent_2 = 1;

           end

       end

       parent_1 = parent_chromosome(parent_1,:);

       parent_2 = parent_chromosome(parent_2,:);

       child_1=parent_1;

       child_2=parent_2;

 

   if rand(1) <pc%交叉概率0.9

       for j = 1 : V

         u(j) = rand(1);

           if u(j) <= 0.5

              bq(j) = (2*u(j))^(1/(mu+1));

           else

              bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));

           end

           child_1(j) = ...

                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));

           child_2(j) = ...

               0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));

           if child_1(j) > u_limit(j)

               child_1(j) = u_limit(j);

           elseif child_1(j) < l_limit(j)

               child_1(j) = l_limit(j);

           end

           if child_2(j) > u_limit(j)

               child_2(j) = u_limit(j);

           elseif child_2(j) < l_limit(j)

               child_2(j) = l_limit(j);

           end

       end

       child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);

       child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);

   end

       child(p,:) =  child_1(:, 1: M + V);

       child(p+1,:) = child_2(:, 1: M + V);

       p = p + 2;

end

[S,L] = size(child);

pp=1;

%%对交叉后的数组的每个个体根据概率进行变异操作

for jj=1:S  

       child_3 = child(pp,:);

     if rand(1)<pm          

       for ji = 1 : V

       r(ji) = rand(1);

          if r(ji) < 0.5

              delta(ji) = (2*r(ji))^(1/(mum+1)) - 1;

          else

              delta(ji) = 1 - (2*(1 - r(ji)))^(1/(mum+1));

          end

         

          child_3(ji) = child_3(ji) + delta(ji);

          if child_3(ji) > u_limit(ji) % 条件约束

              child_3(ji) = u_limit(ji);

          elseif child_3(ji) < l_limit(ji)

              child_3(ji) = l_limit(ji);

          end

       end

          child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);

     end

       child(pp,:) = child_3(:,1:M+V);      

       pp=pp+1;

   end


f = child;

⛄ 运行结果

⛄ 参考文献

[1]欧名勇, 陈仲伟, 谭玉东,等. 基于峰谷分时电价引导下的电动汽车充电负荷优化[J]. 电力科学与技术学报, 2020, 35(5):6.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
24天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
119 8
|
24天前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
|
24天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
142 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
118 2
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
177 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
104 6
|
24天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
104 8
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
1月前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
2月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
204 14

热门文章

最新文章