基于NSGAII算法的峰谷分时电价引导下的电动汽车充电负荷优化研究附Matlab代码

简介: 基于NSGAII算法的峰谷分时电价引导下的电动汽车充电负荷优化研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

在研究电动汽车用户充电需求的前提下,利用蒙特卡洛方法对2种不同充电方式进行模拟并对其进行分析;分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基础上,用实际案例对模型进行验证,利用多目标优化遗传算法进行求解,验证峰谷分时电价对电网负荷优化的有效性.

遗传算法是受达尔文的进化论以及孟德尔的遗传学说影响,模仿自然界生物种群进化机制而发展起来的随机全局搜索方法和优化方法,特点是高效、并行、全局搜索。采用适者生存的原则,利用某种编码技术,通过适应度函数寻找新的近似解,在这个过程中导致了种群中个体的进化,使得种群比之前更能适应环境,就像自然界的改造[11]。该文涉及多目标和多约束的优化问题,当需要多个目标在区域内达到最优时,有时目标会相互冲突,对于求解此类问题的 Pareto最优解有以下常用的几种方法:权重系数变换法,给每个子目标函数赋予权重系数后转变为单目标优化问题;并列选择法,将群体所有个体按照子目标函数划分子群体,各自选出适应度高的个体以得到新的子群体,再将其合并,不断进行 至 最 大 次 数,最 终 得 到 多 目 标 优 化 的Pareto最优解。由于权重系数分配问题会得到不同的结果可能导致得到与实际情况相偏差的解,故该文采用并列选择法。

⛄ 部分代码


function f  = genetic_operator(parent_chromosome, M, V, mu,mum, l_limit, u_limit)

[N,m] = size(parent_chromosome);%N是交配池中的个体数量

%clear m

p = 1;

%下面代码找出交配池中非支配等级的最大值和最小值 为自适应概率计算做准备


pc=0.9;

pm=0.1;

%%首先进行交叉工作

for i = 1 : N%这里虽然循环N次,但是每次循环都会有概率产生2个子代,所以最终产生的子代个体数量是2N个

       child_1 = [];

       child_2 = [];

       parent_1 = round(N*rand(1));

       if parent_1 < 1

           parent_1 = 1;

       end

       parent_2 = round(N*rand(1));

       if parent_2 < 1

           parent_2 = 1;

       end

       while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))

           parent_2 = round(N*rand(1));

           if parent_2 < 1

               parent_2 = 1;

           end

       end

       parent_1 = parent_chromosome(parent_1,:);

       parent_2 = parent_chromosome(parent_2,:);

       child_1=parent_1;

       child_2=parent_2;

 

   if rand(1) <pc%交叉概率0.9

       for j = 1 : V

         u(j) = rand(1);

           if u(j) <= 0.5

              bq(j) = (2*u(j))^(1/(mu+1));

           else

              bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));

           end

           child_1(j) = ...

                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));

           child_2(j) = ...

               0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));

           if child_1(j) > u_limit(j)

               child_1(j) = u_limit(j);

           elseif child_1(j) < l_limit(j)

               child_1(j) = l_limit(j);

           end

           if child_2(j) > u_limit(j)

               child_2(j) = u_limit(j);

           elseif child_2(j) < l_limit(j)

               child_2(j) = l_limit(j);

           end

       end

       child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);

       child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);

   end

       child(p,:) =  child_1(:, 1: M + V);

       child(p+1,:) = child_2(:, 1: M + V);

       p = p + 2;

end

[S,L] = size(child);

pp=1;

%%对交叉后的数组的每个个体根据概率进行变异操作

for jj=1:S  

       child_3 = child(pp,:);

     if rand(1)<pm          

       for ji = 1 : V

       r(ji) = rand(1);

          if r(ji) < 0.5

              delta(ji) = (2*r(ji))^(1/(mum+1)) - 1;

          else

              delta(ji) = 1 - (2*(1 - r(ji)))^(1/(mum+1));

          end

         

          child_3(ji) = child_3(ji) + delta(ji);

          if child_3(ji) > u_limit(ji) % 条件约束

              child_3(ji) = u_limit(ji);

          elseif child_3(ji) < l_limit(ji)

              child_3(ji) = l_limit(ji);

          end

       end

          child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);

     end

       child(pp,:) = child_3(:,1:M+V);      

       pp=pp+1;

   end


f = child;

⛄ 运行结果

⛄ 参考文献

[1]欧名勇, 陈仲伟, 谭玉东,等. 基于峰谷分时电价引导下的电动汽车充电负荷优化[J]. 电力科学与技术学报, 2020, 35(5):6.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
3月前
|
缓存 算法 物联网
基于AODV和leach协议的自组网络平台matlab仿真,对比吞吐量,负荷,丢包率,剩余节点个数,节点消耗能量
本系统基于MATLAB 2017b,对AODV与LEACH自组网进行了升级仿真,新增运动节点路由测试,修正丢包率统计。AODV是一种按需路由协议,结合DSDV和DSR,支持动态路由。程序包含参数设置、消息收发等功能模块,通过GUI界面配置节点数量、仿真时间和路由协议等参数,并计算网络性能指标。 该代码实现了节点能量管理、簇头选举、路由发现等功能,并统计了网络性能指标。
174 73
|
2月前
|
安全 调度
电力系统的负荷损失和潮流计算matlab仿真,对比最高度数,最高介数以及最高关键度等节点攻击
本课题研究节点攻击对电力系统稳定性的影响,通过模拟最高度数、最高介数和最高关键度攻击,对比不同攻击方式下的停电规模。采用MATLAB 2022a 进行系统仿真,核心程序实现线路断开、潮流计算及优化。研究表明,节点攻击会导致负荷损失和系统瘫痪,对电力系统的安全构成严重威胁。通过分析负荷损失率和潮流计算,提出减少负荷损失的方法,以提升电力系统的稳定性和安全性。
|
6月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
111 6
|
7月前
|
机器学习/深度学习 算法
m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。
187 4
|
6月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为&quot;Ttttttt111222&quot;,优化后为&quot;Tttttttt333444&quot;,明显改进体现为&quot;Tttttttttt5555&quot;。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用&#39;adam&#39;优化器和超参数调整,最终评估并保存预测结果。
57 0
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
4天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
1天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
5天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
17天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。