【ML】matlab和python实现SVD(奇异值分解)算法

简介: matlab和python实现SVD(奇异值分解)算法

1.SVD
SVD: Singular Value Decomposition,奇异值分解
SVD算法不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。

假设我们现在有一个矩阵M(m×n),如果其存在一个分解:M = UDV^T^
其中,U(m×m,酉矩阵,即U^T^=U^-1^);
D(m×n,半正定矩阵);
V^T^(n×n,酉矩阵,V的共轭转置矩阵);
==这样的分解称为M的奇异值分解。==
**D对角线上的元素称为奇异值;
U称为左奇异矩阵;
V^T^称为右奇异矩阵。**

2.SVD奇异值分解与特征值分解的关系
特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征。
==然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵。==

M^T^M = (UDV^T^)^T^UDV^T^=V(D^T^D)V^T^
MM^T^ = UDV^T^(UDV^T^)^T^=U(DD^T^)U^T^
这里,M^T^M和MM^T^是方阵;
U^T^U和V^T^为单位矩阵,
V^T^为M^T^M的特征向量,
U为MM^T^的特征向量。
==M^T^M 和MM^T^的特征值为M的奇异值的平方==

3.SVD奇异值分解的作用核意义
==奇异值分解最大的作用就是数据的降维==

m×n的矩阵M,进行奇异值分解:
M(m×n) = U(m×m)D(m×n)V^T^(n×n)
取其前r个非零奇异值,可以还原原来的矩阵,即前个非零奇异值对应的奇异向量代表了矩阵的主要特征。
可以表示为:
M(m×n)约等于 U(m×r)D(r×r)V^T^(r×n)

4.matlab实现SVD

%% 测试奇异值分解过程
load A.mat;%该文件是做好的一个手写体的图片(28*28 uint8类型)

% for i = 1:28
%     j = 28*(i-1)+1;
%     B(i,:) = A(1,j:j+27);
% end

B = zeros(28,28);%将行向量重新转换成原始的图片
% 方法一:uint8转double类型
for i = 1:28
    for j = 1:28
        B(i,j) = A(i,j);
    end
end

% % 方法二:uint8转double
% B = im2double(A);

%进行奇异值分解
[U S V] = svd(B); 

% U:左奇异矩阵
% S:对角矩阵,对角线上的元素是奇异值,从大到小排列
% V:右奇异矩阵

%选取前面14个非零奇异值
for i = 1:14
    for j = 1:14
        S_1(i,j) = S(i,j);
    end
end

%左奇异矩阵
for i = 1:28
    for j = 1:14
        U_1(i,j) = U(i,j);
    end
end

%右奇异矩阵
for i = 1:28
    for j = 1:14
        V_1(i,j) = V(i,j);
    end
end

B_1 = U_1*S_1*V_1';

%同时输出两个图片
subplot(121);imshow(B); % B是没降维之前
subplot(122);imshow(B_1); % B_是降维后之的

这里有一个疑问?
B是28 28,B_也是28 28的啊?不是说好的降维呢?
我是这么理解的:
实际上,取前r=14个奇异值,再重构图片,这就是一个降维过程啊,
以前一张图片是m×n,现在把它分解成后,取奇异值前r个,
则,左奇异矩阵为:m×r
奇异值矩阵:r×r
右奇异矩阵:r×n
在这里插入图片描述
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵。

==[从28维降到了14维]==
取的r值越大,重构的图片和原始图片越像。(当然是再矩阵行列数范围内)

run result:
在这里插入图片描述
原始的矩阵B:
在这里插入图片描述
分解后的U:
在这里插入图片描述
分解后的S:
在这里插入图片描述
分解后的V:
在这里插入图片描述
5.python实现SVD
python中的numpy提供了SVD分解算法
函数调用:

np.linalg.svd(a,full_matrices=1,compute_uv=1)
# a:一个m×n矩阵
# full_matrices:取值为0或者1,默认取1,这时u大小为m×m,v的大小为n×n;否则,u的大小为m×k,v的大小为k×n,
# k = min(m,n)
# compute_uv:取值为0或者1,默认取1,表示计算u,s,v;取0表示只计算s

from scipy.io import loadmat 
from numpy import linalg as la
from skimage import io # 用于显示图片
import numpy as np

load_data = loadmat('A_0.mat') # 为0手写体
A = load_data['A'] # 获取数据集
A = A[:,0:26]

# 原始图片
io.imshow(A)

#data = np.double(data) # python中svd可直接对uint8进行计算

U,Sigma,VT = la.svd(A)

# Sigma:本身应该是28*26的矩阵,但是只返回一列奇异值不为0组成的向量,为了节省空间
# U:28*28
# V: 26*26

S = np.zeros((28,26))
S[:26,:26] = np.diag(Sigma)
A_recon = np.dot(np.dot(U, S), VT) # 恢复原始维度
io.imshow(A_recon)

run result:
在这里插入图片描述
总结:我一直在想降维,是高维到低维,比如2826的矩阵,降到2814的矩阵,这样直观产生数据才对啊,我看网上也有和我同样的疑问,这个SVD分解的过程,到取前r个奇异值,(得到简化的U_1,S_1,V_1,这就是降维啊,哈哈哈)进行数据还原,这个才是SVD的精髓所在。

参考和引用:
https://www.zhihu.com/question/34143886 (SVD 降维体现在什么地方?
感觉即使把分解的三个矩阵变小,可乘回去整个矩阵并没有小。)

https://www.jianshu.com/p/9846fc1c4cac

https://blog.csdn.net/google19890102/article/details/27109235

https://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html

https://blog.csdn.net/mingyuli/article/details/81092795

仅用来个人学习和分享,如有错误,请指正。

如若侵权,留言立删。

相关文章
|
28天前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
100 2
|
19天前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
103 0
|
19天前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
103 8
|
19天前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
|
19天前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
|
19天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
28天前
|
存储 监控 并行计算
目标跟踪中常用点迹航迹数据关联算法的MATLAB实现
通过计算测量点与预测点之间的欧氏距离,选择最近邻点进行关联,适用于单目标跟踪场景。
|
2月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
167 3
|
2月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
1月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。

推荐镜像

更多