基于Pytorch学习Bert模型配置运行环境详细流程

简介: 基于Pytorch学习Bert模型配置运行环境详细流程

BERT是2018年10月由Google AI研究院提出的一种预训练模型。BERT的全称是Bidirectional Encoder Representation from Transformers。BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类,并且在11种不同NLP测试中创出SOTA表现,包括将GLUE基准推高至80.4% (绝对改进7.6%),MultiNLI准确度达到86.7% (绝对改进5.6%),成为NLP发展史上的里程碑式的模型成就。

一、安装配置初步运行环境

安装文章链接: 点击打开《基于Windows中学习Deep Learning之搭建Anaconda+Pytorch(Cuda+Cudnn)+Pycharm工具和配置环境完整最简版》文章

二、根据上面的文章配置好初步环境后,复制粘贴下面命令打开“D:\Anaconda\Scripts”路径下的控制平台CMD运行安装transformers,若出现下面图片中的错误无法正常安装则继续往后操作进行,没出现问题直接跳转到第九步(注意:博主配置运行环境是在Anaconda默认base的环境和新建的python虚拟环境transformers下都进行配置,其实可以只配置一个就行,一般选择新建的python虚拟环境,然后将配置好的虚拟环境的python运行环境和Pycharm对应的项目进行连接,然后即可正常运行项目程序)。

pip install transformers

三、打开Anaconda Prompt,依次复制下面的命令运行建立Anaconda的python虚拟环境transformers,然后将“D:\Anaconda\envs\transformers\Scripts”添加到环境变量PATH中。注意:下面命令中的python=3.7是根据博主安装的python版本对应的,若你安装的是其他版本可以进行对应的修改。

conda create -n transformers python=3.7
conda env list

四、复制粘贴下面命令打开“D:\Anaconda\envs\transformers\Scripts”路径下的控制平台CMD运行安装transformers,等待一分钟左右进行安装。

pip install transformers

五、下载完成后将对应下载的文件复制粘贴到“D:\Anaconda\Scripts”路径下,复制粘贴过程中若提示重复的文件,要选择直接跳过。

六、复制粘贴下面命令打开“D:\Anaconda\Scripts”路径下的控制平台CMD运行安装transformers,可能会出现下面图片中的部分小问题,如:ERROR: Cannot uninstall ‘PyYAML’。

pip install transformers

七、复制粘贴下面命令继续运行即可解决上面的小问题。

pip install --ignore-installed PyYAML

八、复制粘贴下面命令运行,等待十秒成功安装见下图。

pip install transformers

九、测试安装transformers是否成功,运行下面的代码是否报错,若报错表示没有安装成功见下图。

from transformers import BertTokenizer, BertModel, BertForMaskedLM

十、若没有报错表示安装成功,见下图。

注意:有些涉及Bert模型配置运行环境的文章和github仓库依旧使用下面的命令进行环境的安装,但是总是提示无法安装,原因是Hugging Face的这款BERT工具以前称为pytorch-transformers和pytorch-pretrained-bert,在不断的更新迭代中已经更名为transformers这个名字,自然安装pytorch-pretrained-bert是无法正常安装的,所以要改成安装transformers。

pip install pytorch-pretrained-bert

pip install transformers


相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
PyTorch学习实战:AI从数学基础到模型优化全流程精解
本文系统讲解人工智能、机器学习与深度学习的层级关系,涵盖PyTorch环境配置、张量操作、数据预处理、神经网络基础及模型训练全流程,结合数学原理与代码实践,深入浅出地介绍激活函数、反向传播等核心概念,助力快速入门深度学习。
156 1
|
1月前
|
机器学习/深度学习 数据采集 人工智能
35_BERT与RoBERTa:优化编码器模型
2018年,Google发布的BERT(Bidirectional Encoder Representations from Transformers)模型彻底改变了自然语言处理领域的格局。作为第一个真正意义上的双向预训练语言模型,BERT通过创新的掩码语言模型(Masked Language Model, MLM)预训练策略,使模型能够同时从左右两侧的上下文信息中学习语言表示,从而在多项NLP任务上取得了突破性进展。
|
1月前
|
人工智能 自然语言处理 调度
24_BERT模型详解:从预训练到微调的全方位指南
BERT(Bidirectional Encoder Representations from Transformers)是由Google AI在2018年推出的革命性预训练语言模型,它彻底改变了自然语言处理(NLP)领域的格局。通过创新的双向训练方式,BERT能够捕捉词语在上下文环境中的完整语义信息,从而在各种下游任务中取得了突破性的表现。
|
5月前
|
存储 机器学习/深度学习 自然语言处理
避坑指南:PAI-DLC分布式训练BERT模型的3大性能优化策略
本文基于电商搜索场景下的BERT-Large模型训练优化实践,针对数据供给、通信效率与计算资源利用率三大瓶颈,提出异步IO流水线、梯度压缩+拓扑感知、算子融合+混合精度等策略。实测在128卡V100集群上训练速度提升3.2倍,GPU利用率提升至89.3%,训练成本降低70%。适用于大规模分布式深度学习任务的性能调优。
229 2
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
1600 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
昇腾AI行业案例(四):基于 Bert 模型实现文本分类
欢迎学习《昇腾行业应用案例》的“基于 Bert 模型实现文本分类”实验。在本实验中,您将学习如何使用利用 NLP (natural language processing) 领域的AI模型来构建一个端到端的文本系统,并使用开源数据集进行效果验证。为此,我们将使用昇腾的AI硬件以及CANN等软件产品。
696 0
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
4647 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
|
6月前
|
机器学习/深度学习 PyTorch API
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践
本文深入探讨神经网络模型量化技术,重点讲解训练后量化(PTQ)与量化感知训练(QAT)两种主流方法。PTQ通过校准数据集确定量化参数,快速实现模型压缩,但精度损失较大;QAT在训练中引入伪量化操作,使模型适应低精度环境,显著提升量化后性能。文章结合PyTorch实现细节,介绍Eager模式、FX图模式及PyTorch 2导出量化等工具,并分享大语言模型Int4/Int8混合精度实践。最后总结量化最佳策略,包括逐通道量化、混合精度设置及目标硬件适配,助力高效部署深度学习模型。
894 21
PyTorch量化感知训练技术:模型压缩与高精度边缘部署实践

热门文章

最新文章

推荐镜像

更多