基于Pytorch学习Bert模型配置运行环境详细流程

简介: 基于Pytorch学习Bert模型配置运行环境详细流程

BERT是2018年10月由Google AI研究院提出的一种预训练模型。BERT的全称是Bidirectional Encoder Representation from Transformers。BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类,并且在11种不同NLP测试中创出SOTA表现,包括将GLUE基准推高至80.4% (绝对改进7.6%),MultiNLI准确度达到86.7% (绝对改进5.6%),成为NLP发展史上的里程碑式的模型成就。

一、安装配置初步运行环境

安装文章链接: 点击打开《基于Windows中学习Deep Learning之搭建Anaconda+Pytorch(Cuda+Cudnn)+Pycharm工具和配置环境完整最简版》文章

二、根据上面的文章配置好初步环境后,复制粘贴下面命令打开“D:\Anaconda\Scripts”路径下的控制平台CMD运行安装transformers,若出现下面图片中的错误无法正常安装则继续往后操作进行,没出现问题直接跳转到第九步(注意:博主配置运行环境是在Anaconda默认base的环境和新建的python虚拟环境transformers下都进行配置,其实可以只配置一个就行,一般选择新建的python虚拟环境,然后将配置好的虚拟环境的python运行环境和Pycharm对应的项目进行连接,然后即可正常运行项目程序)。

pip install transformers

三、打开Anaconda Prompt,依次复制下面的命令运行建立Anaconda的python虚拟环境transformers,然后将“D:\Anaconda\envs\transformers\Scripts”添加到环境变量PATH中。注意:下面命令中的python=3.7是根据博主安装的python版本对应的,若你安装的是其他版本可以进行对应的修改。

conda create -n transformers python=3.7
conda env list

四、复制粘贴下面命令打开“D:\Anaconda\envs\transformers\Scripts”路径下的控制平台CMD运行安装transformers,等待一分钟左右进行安装。

pip install transformers

五、下载完成后将对应下载的文件复制粘贴到“D:\Anaconda\Scripts”路径下,复制粘贴过程中若提示重复的文件,要选择直接跳过。

六、复制粘贴下面命令打开“D:\Anaconda\Scripts”路径下的控制平台CMD运行安装transformers,可能会出现下面图片中的部分小问题,如:ERROR: Cannot uninstall ‘PyYAML’。

pip install transformers

七、复制粘贴下面命令继续运行即可解决上面的小问题。

pip install --ignore-installed PyYAML

八、复制粘贴下面命令运行,等待十秒成功安装见下图。

pip install transformers

九、测试安装transformers是否成功,运行下面的代码是否报错,若报错表示没有安装成功见下图。

from transformers import BertTokenizer, BertModel, BertForMaskedLM

十、若没有报错表示安装成功,见下图。

注意:有些涉及Bert模型配置运行环境的文章和github仓库依旧使用下面的命令进行环境的安装,但是总是提示无法安装,原因是Hugging Face的这款BERT工具以前称为pytorch-transformers和pytorch-pretrained-bert,在不断的更新迭代中已经更名为transformers这个名字,自然安装pytorch-pretrained-bert是无法正常安装的,所以要改成安装transformers。

pip install pytorch-pretrained-bert

pip install transformers


相关文章
|
2月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
331 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
369 2
|
20天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
35 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
69 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
2月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
123 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
2月前
|
机器学习/深度学习 缓存 PyTorch
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
这篇文章是关于如何下载、安装和配置Miniconda,以及如何使用Miniconda创建和管理Python环境的详细指南。
517 0
pytorch学习一(扩展篇):miniconda下载、安装、配置环境变量。miniconda创建多版本python环境。整理常用命令(亲测ok)
|
2月前
|
机器学习/深度学习 自然语言处理 知识图谱
|
2月前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
202 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
【AI大模型】BERT模型:揭秘LLM主要类别架构(上)
|
3月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
206 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型