【AI大模型】BERT模型:揭秘LLM主要类别架构(上)

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 【AI大模型】BERT模型:揭秘LLM主要类别架构(上)

🍔 LLM主要类别

LLM本身基于transformer架构。自2017年,attention is all you need诞生起,原始的transformer模型为不同领域的模型提供了灵感和启发。基于原始的Transformer框架,衍生出了一系列模型,一些模型仅仅使用encoder或decoder,有些模型同时使用encoder+decoder。

LLM分类一般分为三种:自编码模型(encoder)、自回归模型(decoder)和序列到序列模型(encoder-decoder)。

本文章我们主要介绍自编码模型。


🍔 自编码模型

自编码模型 (AutoEncoder model,AE) 模型,代表作BERT,其特点为:Encoder-Only, 基本原理:是在输入中随机MASK掉一部分单词,根据上下文预测这个词。AE模型通常用于内容理解任务,比如自然语言理NLU中的分类任务:情感分析、提取式问答


2.1 代表模型 BERT

BERT是2018年10月由Google AI研究院提出的一种预训练模型.

  • BERT的全称是Bidirectional Encoder Representation from Transformers.
  • BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类, 并且在11种不同NLP测试中创出SOTA表现. 包括将GLUE基准推高至80.4% (绝对改进7.6%), MultiNLI准确度达到86.7% (绝对改进5.6%). 成为NLP发展史上的里程碑式的模型成就.

2.1.1 BERT的架构

总体架构: 如下图所示, 最左边的就是BERT的架构图, 可以很清楚的看到BERT采用了Transformer Encoder block进行连接, 因为是一个典型的双向编码模型.

从上面的架构图中可以看到, 宏观上BERT分三个主要模块:

  • 最底层黄色标记的Embedding模块.
  • 中间层蓝色标记的Transformer模块.
  • 最上层绿色标记的预微调模块.

2.1.2 Embedding模块

BERT中的该模块是由三种Embedding共同组成而成, 如下图

  • Token Embeddings 是词嵌入张量, 第一个单词是CLS标志, 可以用于之后的分类任务.
  • Segment Embeddings 是句子分段嵌入张量, 是为了服务后续的两个句子为输入的预训练任务.
  • Position Embeddings 是位置编码张量, 此处注意和传统的Transformer不同, 不是三角函数计算的固定位置编码, 而是通过学习得出来的.
  • 整个Embedding模块的输出张量就是这3个张量的直接加和结果.

2.1.3 双向Transformer模块

BERT中只使用了经典Transformer架构中的Encoder部分, 完全舍弃了Decoder部分. 而两大预训练任务也集中体现在训练Transformer模块中.


2.1.4 预微调模块

经过中间层Transformer的处理后, BERT的最后一层根据任务的不同需求而做不同的调整即可.

比如对于sequence-level的分类任务, BERT直接取第一个[CLS] token 的final hidden state, 再加一层全连接层后进行softmax来预测最终的标签.

  • 对于不同的任务, 微调都集中在预微调模块, 几种重要的NLP微调任务架构图展示如下

  • 从上图中可以发现, 在面对特定任务时, 只需要对预微调层进行微调, 就可以利用Transformer强大的注意力机制来模拟很多下游任务, 并得到SOTA的结果. (句子对关系判断, 单文本主题分类, 问答任务(QA), 单句贴标签(NER))
  • 若干可选的超参数建议如下:

Batch size: 16, 32

Learning rate (Adam): 5e-5, 3e-5, 2e-5

Epochs: 3, 4


2.1.5 BERT的预训练任务

BERT包含两个预训练任务:

  • 任务一: Masked LM (带mask的语言模型训练)
  • 任务二: Next Sentence Prediction (下一句话预测任务)

2.1.5.1 任务一: Masked LM

带mask的语言模型训练

  • 关于传统的语言模型训练, 都是采用left-to-right, 或者left-to-right + right-to-left结合的方式, 但这种单向方式或者拼接的方式提取特征的能力有限. 为此BERT提出一个深度双向表达模型(deep bidirectional representation). 即采用MASK任务来训练模型.
  • 1: 在原始训练文本中, 随机的抽取15%的token作为参与MASK任务的对象.
  • 2: 在这些被选中的token中, 数据生成器并不是把它们全部变成[MASK], 而是有下列3种情况.
  • 2.1: 在80%的概率下, 用[MASK]标记替换该token, 比如my dog is hairy -> my dog is [MASK]
  • 2.2: 在10%的概率下, 用一个随机的单词替换token, 比如my dog is hairy -> my dog is apple
  • 2.3: 在10%的概率下, 保持该token不变, 比如my dog is hairy -> my dog is hairy
  • 3: 模型在训练的过程中, 并不知道它将要预测哪些单词? 哪些单词是原始的样子? 哪些单词被遮掩成了[MASK]? 哪些单词被替换成了其他单词? 正是在这样一种高度不确定的情况下, 反倒逼着模型快速学习该token的分布式上下文的语义, 尽最大努力学习原始语言说话的样子. 同时因为原始文本中只有15%的token参与了MASK操作, 并不会破坏原语言的表达能力和语言规则.

2.1.5.2 任务二: Next Sentence Prediction

下一句话预测任务

  • 在NLP中有一类重要的问题比如QA(Quention-Answer), NLI(Natural Language Inference), 需要模型能够很好的理解两个句子之间的关系, 从而需要在模型的训练中引入对应的任务. 在BERT中引入的就是Next Sentence Prediction任务. 采用的方式是输入句子对(A, B), 模型来预测句子B是不是句子A的真实的下一句话.
  • 1: 所有参与任务训练的语句都被选中作为句子A.
  • 1.1: 其中50%的B是原始文本中真实跟随A的下一句话. (标记为IsNext, 代表正样本)
  • 1.2: 其中50%的B是原始文本中随机抽取的一句话. (标记为NotNext, 代表负样本)
  • 2: 在任务二中, BERT模型可以在测试集上取得97%-98%的准确率.

2. 1.6 数据集

BooksCorpus (800M words) + English Wikipedia (2,500M words)


2.1.7 BERT模型的特点

模型的一些关键参数为:

参数 取值
transformer 层数 12
特征维度 768
transformer head 数 12
总参数量 1.15 亿

2.2 AE模型总结

优点:

  • BERT使用双向transformer,在语言理解相关的任务中表现很好。

缺点:

  • 输入噪声:BERT在预训练过程中使用【mask】符号对输入进行处理,这些符号在下游的finetune任务中永远不会出现,这会导致预训练-微调差异。而AR模型不会依赖于任何被mask的输入,因此不会遇到这类问题。
  • 更适合用于语言嵌入表达, 语言理解方面的任务, 不适合用于生成式的任务

🍔 小结

  • 本小节主要介绍LLM的主要类别架构:自编码模型。
  • 对自编码模型的代表模型:BERT相关模型进行介绍

💘若拙见能为您的学习之旅添一丝光亮,不胜荣幸💘

🐼 期待您的宝贵意见,共同进步🐼

相关文章
|
28天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
77 2
|
30天前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
230 2
|
26天前
|
机器学习/深度学习 自然语言处理 PyTorch
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
近年来,大型语言模型(LLMs)在自然语言处理领域取得显著进展,研究人员开始探索将其应用于时间序列预测。Jin等人提出了LLM-Mixer框架,通过多尺度时间序列分解和预训练的LLMs,有效捕捉时间序列数据中的短期波动和长期趋势,提高了预测精度。实验结果显示,LLM-Mixer在多个基准数据集上优于现有方法,展示了其在时间序列预测任务中的巨大潜力。
54 3
LLM-Mixer: 融合多尺度时间序列分解与预训练模型,可以精准捕捉短期波动与长期趋势
|
24天前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
54 2
|
28天前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
7天前
|
自然语言处理 开发者
多模态大模型LLM、MLLM性能评估方法
针对多模态大模型(LLM)和多语言大模型(MLLM)的性能评估,本文介绍了多种关键方法和标准,包括模态融合率(MIR)、多模态大语言模型综合评估基准(MME)、CheckList评估方法、多模态增益(MG)和多模态泄露(ML),以及LLaVA Bench。这些方法为评估模型的多模态和多语言能力提供了全面的框架,有助于研究者和开发者优化和改进模型。
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
大模型强崩溃!Meta新作:合成数据有剧毒,1%即成LLM杀手
在人工智能领域,大型语言模型(LLMs)的快速发展令人瞩目,但递归生成数据可能导致“模型崩溃”。Meta的研究揭示,模型在训练过程中会逐渐遗忘低概率事件,导致数据分布偏差。即使少量合成数据(如1%)也会显著影响模型性能,最终导致崩溃。研究强调保留原始数据的重要性,并提出社区合作和技术手段来区分合成数据和真实数据。论文地址:https://www.nature.com/articles/s41586-024-07566-y
23 2
|
30天前
|
存储 人工智能 算法
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
为了帮助更多人掌握大模型技术,尼恩和他的团队编写了《LLM大模型学习圣经》系列文档,包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构,基于LLM+RAG构建生产级企业知识库》和《从0到1吃透大模型的顶级架构》。这些文档不仅系统地讲解了大模型的核心技术,还提供了实战案例和配套视频,帮助读者快速上手。
精通RAG架构:从0到1,基于LLM+RAG构建生产级企业知识库
|
11天前
|
人工智能 自然语言处理 算法
政务培训|LLM大模型在政府/公共卫生系统的应用
本课程是TsingtaoAI公司面向某卫生统计部门的政府职员设计的大模型技术应用课程,旨在系统讲解大语言模型(LLM)的前沿应用及其在政府业务中的实践落地。课程涵盖从LLM基础知识到智能化办公、数据处理、报告生成、智能问答系统构建等多个模块,全面解析大模型在卫生统计数据分析、报告撰写和决策支持等环节中的赋能价值。
34 2
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
医疗行业的语音识别技术解析:AI多模态能力平台的应用与架构
AI多模态能力平台通过语音识别技术,实现实时转录医患对话,自动生成结构化数据,提高医疗效率。平台具备强大的环境降噪、语音分离及自然语言处理能力,支持与医院系统无缝集成,广泛应用于门诊记录、多学科会诊和急诊场景,显著提升工作效率和数据准确性。

热门文章

最新文章