Bert Pytorch 源码分析:五、模型架构简图

简介: Bert Pytorch 源码分析:五、模型架构简图

注意力层:

输入 -> LLQ -> @ -> /√ES  -> softmax -> @ -> LLO -> Dropout -> 输出
 |            ↑                        ↑
 +---> LLK ---+                        |
 |                                     |
 +---> LLV ----------------------------+

FFN 层:

输入 -> LL1 -> GELU -> Dropout -> LL2 -> 输出

TF 层:

输入 -> LN1 -> 注意力层 -> Dropout1 -> ⊕ -> 中间量
 |                                   ↑  
 +-----------------------------------+
中间量 -> LN2 -> PFF 层 -> Dropout2 -> ⊕ -> Dropout3 -> 输出
  |                                   ↑
  +-----------------------------------+

Bert编码器:

输入 -> 嵌入层 -> TF 层 x NL -> 输出

Bert 解码器:

输入 -> LL -> softmax -> 输出
相关文章
|
27天前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
105 3
|
19天前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
35 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
10天前
|
机器学习/深度学习 测试技术 定位技术
新扩散模型OmniGen一统图像生成,架构还高度简化、易用
近期,一篇题为“OmniGen: Unified Image Generation”的论文介绍了一种新型扩散模型OmniGen,旨在统一图像生成任务。OmniGen架构简洁,无需额外模块即可处理多种任务,如文本到图像生成、图像编辑等。该模型通过修正流优化,展现出与现有模型相当或更优的性能,尤其在图像编辑和视觉条件生成方面表现突出。OmniGen仅含3.8亿参数,却能有效处理复杂任务,简化工作流程。尽管如此,OmniGen仍存在对文本提示敏感、文本渲染能力有限等问题,未来研究将继续优化其架构与功能。
39 16
|
1月前
|
机器学习/深度学习 自然语言处理 C++
TSMamba:基于Mamba架构的高效时间序列预测基础模型
TSMamba通过其创新的架构设计和训练策略,成功解决了传统时间序列预测模型面临的多个关键问题。
121 4
TSMamba:基于Mamba架构的高效时间序列预测基础模型
|
24天前
|
网络协议 网络架构
TCP/IP协议架构:四层模型详解
在网络通信的世界里,TCP/IP协议栈是构建现代互联网的基础。本文将深入探讨TCP/IP协议涉及的四层架构,以及每一层的关键功能和作用。
111 5
|
25天前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型演进与经典架构
本文探讨了AI计算模式对AI芯片设计的重要性,通过分析经典模型结构设计与演进、模型量化与压缩等核心内容,揭示了神经网络模型的发展现状及优化方向。文章详细介绍了神经网络的基本组件、主流模型结构、以及模型量化和剪枝技术,强调了这些技术在提高模型效率、降低计算和存储需求方面的关键作用。基于此,提出了AI芯片设计应考虑支持神经网络计算逻辑、高维张量存储与计算、灵活的软件配置接口、不同bit位数的计算单元和存储格式等建议,以适应不断发展的AI技术需求。
30 5
|
2月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
97 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
2月前
|
机器学习/深度学习 自然语言处理 算法
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
[大语言模型-工程实践] 手把手教你-基于BERT模型提取商品标题关键词及优化改进
195 0
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
360 2
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
69 8
利用 PyTorch Lightning 搭建一个文本分类模型
下一篇
DataWorks