【控制】基于粒子群算法的PMSM 驱动器非平稳重复过程速度控制附matlab代码

简介: 【控制】基于粒子群算法的PMSM 驱动器非平稳重复过程速度控制附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

针对耦合和非线性的永磁同步电机(PMSM)控制器优化设计的难题,提出一种基于粒子群优化(PSO)算法的比例、积分和微分(PID)控制器的优化设计方法.综合考虑评价系统的各项性能指标,采用时域性能指标和绝对误差积分组成的适应度函数作为优化目标,给出了优化PID控制器的设计步骤.实验结果表明:优化得到的PID控制器速度响应快、超调量小,有效地提高了永磁同步电机控制系统的动态性能.

⛄ 部分代码

% Adaptive speed control in the PMSM drive for a non-stationary repetitive process using particle swarms

% Xiaoping WANG and Bartlomiej UFNALSKI 2016.04

% Institute of Control and Industrial Electronics, Warsaw University of Techonology

% Xiaoping WANG, xiaoping.wangx@xee.pw.edu.pl (you should

% remove both exes prior to sending me an email)

% Bartlomiej UFNALSKI, bartlomiej.ufnalskix@xee.pw.edu.pl (you should

% remove both exes prior to sending me an email)

% Keywords: repetitive control, dynamic optimization problem, PMSM control



% swarm(index, [location, velocity, best_position, best_value], [controller_gains])

%% Initialization

% parameters


clear mex

clear

clc

tic

evalfit = 1;

psovideo = VideoWriter('pso_pmsm.avi');         %%%%%%%%%%%%%%video record

open(psovideo);         %%%%%%%%%%%%%%video record


% rng('shuffle');

simtime = 0.20;         % simulation time

iter_max = 800;         % maxium times of interations

nlocal = 1;                  %%%% calculate the repeatness of optimal value, to aviod local convergence, date 2013.04.10

localbest = 0;              % local optimal value

br_index = 1;               % index designed for break up if swarm tend to premature


% set initial constant

swarm_size = 10;

scale = 3;  % scale of mean; for membership

no_vari = 2;  % the number of variables, or the dimensions

evapor_cononline = 0.85; % when evapor_con0 = 1, the process is still

stilltolive = 1; % if stilltolive>iter, the process is still, otherwise it is live

change01 = 200; % when to change the interia J

change02 = 400;

change03 = 600;

multi01 = 3; % multiple of the change of J

multi02 = 5;

multi03 = 1;

history = zeros(iter_max,swarm_size,no_vari); %%%%%%%%%%%%%

quality = zeros(iter_max);

index = 1;    % index of output data

scaleplot = 0.1;

plotcon = 10;

diversity_limit(1) = 0.1;

diversity_limit(2) = 50;


procent = 0.03;


for i = 1: no_vari

   diversity_swarm(i) = 0;

   dirv_swarm(i) = 0;

end


Ts = 1e-4;

J0 = 0.005066;

J  = J0;


% set pass

pass = 0;

passa = pass;

for i = 1 : (simtime / Ts + 1)

    pass(i) = passa;

    pass = pass';

end

nnnout = 0;


% velocity clamping

scalev1 = 2;

scalev2 = 2000;

scalevlive1 = 2;

scalevlive2 = 2000;

v_clamp = [2 * scalev1  2 * scalev2];


% initial gbest

for i = 1 : no_vari

std_mean_best(i) = 1000000;

std_mean_worst(i) = 1000000;

end


for i  = 1:swarm_size

       for tt = 1 : (simtime / Ts + 1)

   plotnnout(i,tt) = 0;

   plotbest(i,tt) = 0;

   plotworst(i,tt) = 0;

       end

   passn(i) = 0;

end

%% initialization


std_mean(1) = 5;

std_mean(2) = 2500;

KP = std_mean(1);

KI = std_mean(2);

   

KP0 = KP;

KI0 = KI;

tk = 1;

mk= 1;

arraykp = 0;

arrayki = 0;

arraytk = 0;

arrayJ = 0;


%%%////////////////////////////////////////////////

c_f = 2.05;         % correction factor

K=2/abs(2-2*c_f-sqrt((2*c_f)^2-8*c_f));

%%%////////////////////////////////////////////////


%%%initialization 'save-state'////////////////////////////////////////////////


pidelay0_1 = 0; pidelay0_2 = 0; pidelay0_3 = 0; pidelay0_4 = 0;

minter0_1 = 0; minter0_2 = 0; minter0_3 = 0; minter0_4 = 0;

fdelay0_1 = 0;


pidelay_1 = 0; pidelay_2 = 0; pidelay_3 = 0; pidelay_4 = 0;

minter_1 = 0; minter_2 = 0; minter_3 = 0; minter_4 = 0;

fdelay_1 = 0;


% Noise

noise_level = 0.02;

Imax = 30; % to determine noise signal

erf_inverse = 2.3263;

noise_psd_I = (Imax*noise_level/erf_inverse)^2*Ts;


scale01 = std_mean(1);

scale02 = std_mean(2);%%%%%%%%%%%%%%%%%%%%%%


% initial swarm position


for id = 1:swarm_size

   swarm(id, 1, 1) = scale01 * (1+ 2 * procent * (rand()-0.5));

   swarm(id, 1, 2) = scale02 * (1+ 2 * procent * (rand()-0.5));

end


swarm(:, 4, 1) = 1000000;          % best value so far for the swarm

swarm(:, 5, 1) = 0; % worst value so far for the swarm

val = 0;


val0 = 1000000;

   swarm(:, 2, 1) = 2 * scalevlive1 * (rand(swarm_size,1)-0.5);        % initial velocity

   swarm(:, 2, 2) = 2 * scalevlive2 * (rand(swarm_size,1)-0.5);


figure(1)

plot3(zeros(1,swarm_size),swarm(:, 1, 1),swarm(:, 1, 2),'bo');hold on;

grid; hold on;

grid; hold on;

set(gca,'xdir', 'reverse');

xlabel('swarm iteration','fontsize',14);

ylabel('particles position y-axis','fontsize',14);

zlabel('particles position z-axis','fontsize',14);

set(gca,'FontSize',14);

grid on;


%% Iterations

for iter = 1 : iter_max

   valpassb = 1000000;   % reinitialization the best value for every iteration

   valpassw = 0;   % reinitialization the worst value for every iteration

   disp(['Iterations: ' num2str(iter) ' from ' num2str(iter_max)]);

   localbest = min(swarm(:, 4, 1));

 

   if iter == change01

       J = J0 * multi01;

   end

 

    if iter == change02

       J = J0 * multi02;

    end


    if iter == change03

       J = J0 * multi03;

    end    

   

   

   %-- evaluating position & quality ---

   for n = 1 : swarm_size

       % seed

       rand_seed_1 = round(rand*4294967295);

       rand_seed_2 = round(rand*4294967295);

       

       

       for m = 1 : no_vari

       swarm(n, 2, m)= min(max(-v_clamp(m), swarm(n, 2, m)), v_clamp(m));  % velocity clamping

       swarm(n, 1, m) = swarm(n, 1, m) + swarm(n, 2, m);

       std_mean(m) = swarm(n, 1, m);

       end

     

       KP = std_mean(1);

       KI = std_mean(2);

                   

       if evalfit==1

          simout=sim('DPSOPMSM.slx', 'SaveOutput','on');

       else

           load kbest_fuzzypsopmsm

           open DPSOPMSM.slx

           sim('DPSOPMSM');

       end

       

       

       if iter >= stilltolive    % make on-line mode

       pidelay0_1 = pidelay_1;

       pidelay0_2 = pidelay_2;

       pidelay0_3 = pidelay_3;

       pidelay0_4 = pidelay_4;

       minter0_1 = minter_1;

       minter0_2 = minter_2;

       minter0_3 = minter_3;

       minter0_4 = minter_4;

       fdelay0_1 = fdelay_1;

       evapor_con = evapor_cononline;

       scalev1 = scalevlive1;

       scalev2 = scalevlive2;

       v_clamp = [2 * scalev1 2 * scalev2];

       

       else    % still mode

       pidelay0_1 = 0;

       pidelay0_2 = 0;

       pidelay0_3 = 0;

       pidelay0_4 = 0;

       minter0_1 = 0;

       minter0_2 = 0;

       minter0_3 = 0;

       minter0_4 = 0;

       fdelay0_1 = 0;

       evapor_con = 1;

       end

 

       

       if max(simout.get('tout')) >= simtime

           Yout=simout.get('yout');

           val = Yout(numel(Yout));

       else

           val = 1000000-max(simout.get('tout'));

       end

       

       disp(['Particle: ' num2str(n) '/' num2str(swarm_size) ' with fitness ' num2str(val) ' , position ( ' num2str(swarm(n, 1, :))  ' ) ' ' , (KP, KI) ( ' num2str(KP) ', ' num2str(KI) ' ) ' ]);

       % detect the change of evironment. when there is no big change keep

       % small evaporation constant, and if the evironment has been

       % changed, use bigger constant

       

       if val > swarm(n, 4, 1)*(1 + 0.05)

           evapor_con = 0.85;

           scalevlive1 = 2;

           scalevlive2 = 2000;

       elseif val < swarm(n, 4, 1)*(1 - 0.05)

           evapor_con = 0.85;

           scalevlive1 = 2;

           scalevlive2 = 2000;

       else

           evapor_con = 0.999;

       end

       

       for i = 1 : no_vari

       history(iter,n,i) = std_mean(i);

       end

 

         nout = simout.get('vout');

         tnout = nout.get('Time');

         tnout = tnout';

         nnout = nout.get('Data');

         nnout = nnout';

         plotnnout(n,:) = nnout;

         %val0 = val;

         

         

       if val < swarm(n, 4, 1) / evapor_con                % if new position is better

           www=1;

           for i = 1 : no_vari

           swarm(n, 3, i) = swarm(n, 1, i);    % update best position

           end

           swarm(n, 4, 1) = val;               %  best value

       else

           www=2;

           swarm(n, 4, 1) = swarm(n, 4, 1) / evapor_con;

       end

       

        if val > swarm(n, 5, 1) * evapor_con                % if new position is worse

            ttt=1;

           for i = 1 : no_vari

           swarm(n, 6, i) = swarm(n, 1, i);    % update worst position

           end

           swarm(n, 5, 1) = val;               %  best value

        else

           ttt=2;

           swarm(n, 5, 1) = swarm(n, 5, 1) * evapor_con;

        end

       

      % find the best and worst particle in every iteration  

       if val < valpassb

           nbest = n;

           plotbest(n,:) = nnout;

           valpassb = val;

       end

       

       if val > valpassw

           nworst = n;

           plotworst(n,:) = nnout;

           valpassw = val;

       end

       

   arraykp(mk) = KP;

   arrayki(mk) = KI;

   arraytk(mk) = tk;

   arrayJ(mk) = J;

   tk = tk +1;

   mk = mk+1;

   

   

   [temp, gbest] = min(swarm(:, 4, 1));        % value of global best position

   [temp1, gworst] = max(swarm(:, 5, 1));    % value of global best position

   for i = 1 : no_vari

   std_mean_best(i) = swarm(gbest, 3, i);

   std_mean_worst(i) = swarm(gworst, 6, i);

   end

   std_mean_best;

   std_mean_worst;

   quality(iter) = temp;

 

   end

 

 pass = pass+swarm_size;  


   

   % polt KP, KI along the pass    

   figure(15)

   [ax1, h1, h2 ] = plotyy(arraytk/swarm_size, arraykp, arraytk/swarm_size, arrayJ);

   set(h1,'linestyle','.','marker','.','color','b');

   set(h2,'linestyle','.','marker','.','color','r');

   set(ax1(2),'yLim',[0 0.1]);

   set(ax1(2),'yTick',[0:0.05:0.1]);

   grid on;

   figure(16)

   [ax2, h3, h4 ] = plotyy(arraytk/swarm_size,arrayki, arraytk/swarm_size, arrayJ);

   set(h3,'linestyle','.','marker','.','color','b');

   set(h4,'linestyle','.','marker','.','color','r');

   set(ax2(2),'yLim',[0 0.1]);

   set(ax2(2),'yTick',[0:0.05:0.1]);

   grid on;

 

   

       if iter==1 || mod(iter,2*plotcon)==0

           figure(5)

           plot3((pass+1)/swarm_size, tnout, plotnnout(5,:), 'b' , 'LineWidth', 2 );

           set(gca,'xdir', 'reverse', 'ydir', 'reverse');

           axis([0 iter_max 0 simtime 0 50]);

           grid on

           hold on  

       end

       

       % draw best every iteration

       if iter < change01        

           if iter==1 || mod(iter,plotcon)==0

               figure(7)

               plot3((pass+1)/swarm_size, tnout, plotbest(nbest,:), 'm' , 'LineWidth', 2 );

               set(gca,'xdir', 'reverse', 'ydir', 'reverse');

               axis([0 change01 0 simtime 0 50]);

               grid on

               hold on  

           end

       elseif iter < change02

           if iter==1 || mod(iter,plotcon)==0

               figure(8)

               plot3((pass+1)/swarm_size, tnout, plotbest(nbest,:), 'm' , 'LineWidth', 2 );

               set(gca,'xdir', 'reverse', 'ydir', 'reverse');

               axis([change01 change02 0 simtime 0 50]);

               grid on

               hold on  

           end

       elseif iter < change03

            if iter==1 || mod(iter,plotcon)==0

               figure(9)

               plot3((pass+1)/swarm_size, tnout, plotbest(nbest,:), 'm' , 'LineWidth', 2 );

               set(gca,'xdir', 'reverse', 'ydir', 'reverse');

               axis([change02 change03 0 simtime 0 50]);

               grid on

               hold on  

            end

       else

            if iter==1 || mod(iter,plotcon)==0

               figure(10)

               plot3((pass+1)/swarm_size, tnout, plotbest(nbest,:), 'm' , 'LineWidth', 2 );

               set(gca,'xdir', 'reverse', 'ydir', 'reverse');

               axis([change03 iter_max 0 simtime 0 50]);

               grid on

               hold on  

           end

       end

       

       

       %draw worst every iteration

     if iter < change01  

        if iter==1 || mod(iter,plotcon)==0

           figure(11)

           plot3((pass+1)/swarm_size, tnout, plotworst(nworst,:), 'b' , 'LineWidth', 2 );

           set(gca,'xdir', 'reverse', 'ydir', 'reverse');

           axis([0 change01 0 simtime 0 50]);

           grid on

           hold on  

        end

     elseif iter < change02

         if iter==1 || mod(iter,plotcon)==0

           figure(12)

           plot3((pass+1)/swarm_size, tnout, plotworst(nworst,:), 'b' , 'LineWidth', 2 );

           set(gca,'xdir', 'reverse', 'ydir', 'reverse');

           axis([change01 change02 0 simtime 0 50]);

           grid on

           hold on

         end

     elseif iter < change03

         if iter==1 || mod(iter,plotcon)==0

           figure(13)

hold on;


figure(25)

xlabel('time [s]','FontSize',14);

ylabel('speed response of the worst particle [rad/s]','FontSize',14);

h = legend('\omega_{m}','\omega_{m}^{ref}');

set(h,'FontSize',14);

delete(get(gca,'title'));

set(gca,'FontSize',14);

hold on;


figure(26)

xlabel('time [s]','FontSize',14);

ylabel('speed response of the worst particle [rad/s]','FontSize',14);

h = legend('\omega_{m}','\omega_{m}^{ref}');

set(h,'FontSize',14);

delete(get(gca,'title'));

set(gca,'FontSize',14);

hold on;


figure(27)

xlabel('time [s]','FontSize',14);

ylabel('speed response of the worst particle [rad/s]','FontSize',14);

h = legend('\omega_{m}','\omega_{m}^{ref}');

set(h,'FontSize',14);

delete(get(gca,'title'));

set(gca,'FontSize',14);

hold on;


figure(15)

xlabel('swarm iteration','FontSize',14);

h = legend('K_p','J');

hh1=get(ax1(1),'Ylabel');

set(hh1,'String','value of K_p','FontSize',14);

set(hh1,'color','b');

hh2=get(ax1(2),'Ylabel');

set(hh2,'String','moment of inertia','FontSize',14);

set(hh2,'color','r');

set(ax1(1),'XColor','k','YColor','b','FontSize',14);

set(ax1(2),'XColor','k','YColor','r','FontSize',14);

set(h,'FontSize',14);

set(gca,'FontSize',14);

hold on;


figure(16)

xlabel('swarm iteration','FontSize',14);

h = legend('K_i','J');

hh3=get(ax2(1),'Ylabel');

set(hh3,'String','value of K_i','FontSize',14);

set(hh3,'color','b');

hh4=get(ax2(2),'Ylabel');

set(hh4,'String','moment of inertia','FontSize',14);

set(hh4,'color','r');

set(ax2(1),'XColor','k','YColor','b','FontSize',14);

set(ax2(2),'XColor','k','YColor','r','FontSize',14);

set(h,'FontSize',14);

set(gca,'FontSize',14);

hold on;


figure(28)

xlabel('time [s]','FontSize',14);

ylabel('speed response of the worst particle [rad/s]','FontSize',14);

h = legend('\omega_{m}','\omega_{m}^{ref}');

set(h,'FontSize',14);

delete(get(gca,'title'));

set(gca,'FontSize',14);

hold on;


figure(29)

xlabel('time [s]','FontSize',14);

ylabel('speed response of the worst particle [rad/s]','FontSize',14);

h = legend('\omega_{m}','\omega_{m}^{ref}');

set(h,'FontSize',14);

delete(get(gca,'title'));

set(gca,'FontSize',14);

hold on;


figure(30)

xlabel('time [s]','FontSize',14);

ylabel('speed response of the worst particle [rad/s]','FontSize',14);

h = legend('\omega_{m}','\omega_{m}^{ref}');

set(h,'FontSize',14);

delete(get(gca,'title'));

set(gca,'FontSize',14);

hold on;

%%    'Value lg(KPq)' 'Value lg(KIq)' 'Best Value'};

% save the best values of every interation to excel

title = {'Iteration'  'Best position KP' 'Best position KI'  'Best Value' 'Worst position KP' 'Worst position KI' 'Worst Value'};

xlswrite('Bestworstposition', title, 'sheet1');

xlswrite('Bestworstposition', bestworstposition,'sheet1','A2');



evalfit=0;


if evalfit==1

   simout = sim('DPSOPMSM.slx', ...

              'SaveTime','on','TimeSaveName','tout', ...

              'SaveOutput','on','OutputSaveName','yout');

else

   load kbest_fuzzypsopmsm

   open DPSOPMSM.slx

   sim('DPSOPMSM');

end



disp('-------------------END-------------------');

toc

⛄ 运行结果

⛄ 参考文献

[1]任志斌, 谢阳萍, 肖宇连. 基于粒子群算法的永磁同步电机控制系统研制[J]. 微电机, 2013, 46(12):4.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。

热门文章

最新文章