使用Pytorch和Matplotlib可视化卷积神经网络的特征(上)

简介: 使用Pytorch和Matplotlib可视化卷积神经网络的特征

在处理图像和图像数据时,CNN是最常用的架构。卷积神经网络已经被证明在深度学习和计算机视觉领域提供了许多最先进的解决方案。没有CNN,图像识别、目标检测、自动驾驶汽车就不可能实现。

640.png

640.png

但当归结到CNN如何看待和识别他们所做的图像时,事情就变得更加棘手了。

  • CNN如何判断一张图片是猫还是狗?
  • 在图像分类问题上,是什么让CNN比其他模型更强大?
  • 他们在图像中看到了什么?

这是我第一次了解CNN时的一些问题。问题会随着你的深入而增加。

那时候我听说过过滤器和特性映射,但不知道它们是什么,它们的作用是什么。后来我知道他们是什么,但不知道他们长什么样子,但现在我知道了。在处理深度卷积网络时,过滤器和特征映射很重要。滤镜是使特征被复制的东西,也是模型看到的东西。

什么是CNN的滤镜和特性映射?

过滤器是使用反向传播算法学习的一组权值。如果你做了很多实际的深度学习编码,你可能知道它们也被称作核。过滤器的尺寸可以是3×3,也可以是5×5,甚至7×7。

过滤器在一个CNN层学习检测抽象概念,如人脸的边界,建筑物的边缘等。通过叠加越来越多的CNN层,我们可以从一个CNN中得到更加抽象和深入的信息。

640.png

特性映射是我们通过图像的像素值进行滤波后得到的结果。这就是模型在图像中看到的这个过程叫做卷积运算。将feature map可视化的原因是为了加深对CNN的了解。

640.png

选择模型

我们将使用ResNet-50神经网络模型来可视化过滤器和特征图。使用ResNet-50模型来可视化过滤器和特征图并不理想。原因是resnet模型总的来说有点复杂。遍历内部卷积层会变得非常困难。但是在本篇文章中您将了解如何访问复杂体系结构的内部卷积层后,您将更加适应使用类似的或更复杂的体系结构。

我使用的图片来自pexels。这是我为了训练我的人脸识别分类器而收集的一幅图像。

640.png

模型结构

乍一看,模型的结构可能令人生畏,但要得到我们想要的东西确实很容易。通过了解如何提取这个模型的层,您将能够提取更复杂模型的层。下面是模型结构。

ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): Bottleneck(
      (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (downsample): Sequential(
        (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): Bottleneck(
      (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
...
(2): Bottleneck(
      (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=2048, out_features=1000, bias=True)

提取CNN层

conv_layers = []
model_weights = []
model_children = list(models.resnet50().children())
counter = 0
for i in range(len(model_children)):
     if type(model_children[i]) == nn.Conv2d:
         counter += 1
         model_weights.append(model_children[i].weight)
         conv_layers.append(model_children[i])
     elif type(model_children[i]) == nn.Sequential:
         for j in range(len(model_children[i])):
             for child in model_children[i][j].children():
                 if type(child) == nn.Conv2d:
                     counter += 1
                     model_weights.append(child.weight)
                     conv_layers.append(child)
  1. 首先,在第4行,我们初始化一个计数器变量,以跟踪卷积层的数量。
  2. 从第6行开始,我们将遍历ResNet-50模型的所有层。
  3. 具体来说,我们在三层嵌套中检查卷积层
  4. 第7行,检查模型的直接子层中是否有卷积层。
  5. 然后从第10行开始,我们检查序列块中的瓶颈层是否包含任何卷积层。
  6. 如果上述两个条件中有一个满足,那么我们将该子节点和权值分别附加到conv_layers和model_weights,

上面的代码很简单并且不言自明,但是它仅限于已经存在的模型,比如其他resnet模型resnet-18、34、101、152。对于自定义模型,情况将有所不同,假设在另一个连续层中有一个连续层,如果有一个CNN层,程序将不检查它。这就是我编写的extract .py模块可能有用的地方。

Extractor类

Extractor类可以找到每一个CNN层(除了下采样层),包括它们在任何resnet模型以及几乎在任何自定义resnet和vgg模型中的权重。它不局限于CNN层,它可以找到线性层,如果提到了下采样层的名字,它也可以找到。它还可以提供一些有用的信息,如CNN的数量、模型中的线性层和顺序层。

目录
相关文章
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
67 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
机器学习/深度学习 数据可视化 Windows
深度学习笔记(七):如何用Mxnet来将神经网络可视化
这篇文章介绍了如何使用Mxnet框架来实现神经网络的可视化,包括环境依赖的安装、具体的代码实现以及运行结果的展示。
59 0
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch 中的动态计算图:实现灵活的神经网络架构
【8月更文第27天】PyTorch 是一款流行的深度学习框架,它以其灵活性和易用性而闻名。与 TensorFlow 等其他框架相比,PyTorch 最大的特点之一是支持动态计算图。这意味着开发者可以在运行时定义网络结构,这为构建复杂的模型提供了极大的便利。本文将深入探讨 PyTorch 中动态计算图的工作原理,并通过一些示例代码展示如何利用这一特性来构建灵活的神经网络架构。
341 1
|
5天前
|
机器学习/深度学习 算法 PyTorch
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
|
2月前
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
64 0
|
3月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
3月前
|
数据可视化 Python
可视化 图形 matplotlib
可视化 图形 matplotlib
|
4月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
57 0
|
4月前
|
数据可视化 Python
matplotlib可视化必知必会富文本绘制方法
matplotlib可视化必知必会富文本绘制方法
|
4月前
|
Prometheus 监控 Cloud Native
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?
在Linux中,如何使用Grafana和Prometheus进行网络监控和可视化?