深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现

简介: 深度学习入门(9)神经网络Affine与Softmax层的计算图表示方式及其误差反向传播的代码实现

1 Affine与Softmax层的实现


1.1 Affine层


神经元的加权和可以用Y = np.dot(X, W) + B计算出来。然后,Y 经过激活函数转换后,传递给下一层。这就是神经网络正向传播的流程。


神经网络的正向传播中进行的矩阵的乘积运算在几何学领域被称为仿射变换。将进行仿射变换的处理实现为“Affine

fe9ab3f162b049d2bd6b4d0ee680e377.png


Y = np.dot(X, W) + B,计算图如下:


f49c396201b446cd890c4a4bb52379ab.png

c517d45f9c8b4582908a8593a63692cf.png


式中WTT表示转置。转置操作会把W的元素(i, j)换成元素(j, i)


f0cbce80a795444a99988731f630f82e.png

5c6cc468e4f84905a2d6d43712a00cfb.png


X和αL/αX形状相同,WαL/αW形状相同。从下面的数学式可以很明确地看出X

αL/αX形状相同。


image.png


1.2 批量版的Affine层


前面介绍的Af ne层的输入X是以单个数据为对象的。现在我们考虑N个数据一起进行正向传播的情况,也就是批版本的Affine层。


image.png

image.png


1.3 Softmax-with-Loss层


softmax函数会将输入值正规化之后再输出。比如手写数字识别时,Softmax层的输出如图所示。


image.png


注:神经网络中进行的处理有推理(inference)和学习两个阶段。神经网络的推理通常不使用Softmax层。比如,用图5-28的网络进行推理时,会将最后一个Affine层的输出作为识别结果。神经网络中未被正规化的输出结果(上图中 Softmax 层前面的 Affine 层的输出)有时被称为“得分”。也就是说,当神经网络的推理只需要给出一个答案的情况下,因为此时只对得分最大值感兴趣,所以不需要Softmax层。不过,神经网络的学习阶段则需要Softmax层。


下面来实现Softmax层。考虑到这里也包含作为损失函数的交叉熵误差( cross entropy error),所以称为“ Softmax-with-Loss层”。 Softmax-withLoss层( Softmax函数和交叉熵误差的计算图如下图所示。


注意:交叉熵函数中的log是默认以e为底的。


image.png

计算图简化版:

image.png


softmax函数记为Softmax层,交叉熵误差记为Cross Entropy Error层。这里假设要进行3类分类,从前面的层接收3个输入(得分)。如图5-30所示, Softmax层将输入( a1, a2, a3)正规化,输出( y1,y2, y3)。 Cross Entropy Error层接收Softmax的输出( y1, y2, y3)和教师标签( t1,t2, t3),从这些数据中输出损失L。


Softmax层的反向传播得到了( y1 - t1, y2 - t2, y3 - t3)这样“漂亮”的结果。由于( y1, y2, y3)是Softmax层的输出,( t1, t2, t3)是监督数据,所以( y1 - t1, y2 - t2, y3 - t3)是Softmax层的输出和教师标签的差分。神经网络的反向传播会把这个差分表示的误差传递给前面的层,这是神经网络学习中的重要性质。


注:使用交叉熵误差作为 softmax 函数的损失函数后,反向传播得到( y1 - t1, y2 - t2, y3 - t3)这样“漂亮”的结果。实际上,这样“漂亮”  的结果并不是偶然的,而是为了得到这样的结果,特意设计了交叉熵误差函数。回归问题中输出层使用“恒等函数”,损失函数使用“平方和误差”,也是出于同样的理由(3.5节)。也就是说,使用“平方和误差”作为“恒等函数”的损失函数,反向传播才能得到( y1 -t1, y2 - t2, y3 - t3)这样“漂亮”的结果。


softmax-with-Loss层的代码实现:


image.png

请注意反向传播时,将要传播的值除以批的大小( batch_size)后,传递给前面的层的是单个数据的误差。



相关文章
|
4月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
525 55
|
3月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
292 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
221 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
1天前
|
机器学习/深度学习 人工智能 运维
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
AI“捕风捉影”:深度学习如何让网络事件检测更智能?
22 8
|
1月前
|
机器学习/深度学习 数据采集 算法
基于MobileNet深度学习网络的MQAM调制类型识别matlab仿真
本项目基于Matlab2022a实现MQAM调制类型识别,使用MobileNet深度学习网络。完整程序运行效果无水印,核心代码含详细中文注释和操作视频。MQAM调制在无线通信中至关重要,MobileNet以其轻量化、高效性适合资源受限环境。通过数据预处理、网络训练与优化,确保高识别准确率并降低计算复杂度,为频谱监测、信号解调等提供支持。
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
128 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
机器学习/深度学习 存储 算法
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
161 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
3月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
123 18
|
4月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
282 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别

热门文章

最新文章