深度学习篇之数据集划分方法-附代码python详细注释

简介: 深度学习篇之数据集划分方法-附代码python详细注释

在深度学习训练模型过程中,我们第一步就是要收集相应的数据集,之后我们就是要将数据划分为训练集train和验证集val,但是有时间我们时常面临数据量庞大的问题,手动划分显然是不现实的,因为太麻烦了,而且不具有固定规律的随机性。


但是python对文件和文件夹极其强大的操作性帮助我们解决了数据集划分的问题,本篇博客我们将开源数据集划分的代码,让我们学习如何使用python划分自己的数据集。且我们在程序中设置随机种子,确保每次从数据集中抽取图片划分数据集的时候都是随机的,且保留种子,整个过程可复制。


先简单讲解一下代码的使用方法,在博客的最后会附上完整的代码

data_path = './data'#数据集存放的地方,建议在程序所在的文件夹下新建一个data文件夹,将需要划分的数据集存放进去
data_root = './'  #这里是生成的训练集和验证集所处的位置,这里设置的是在当前文件夹下。

主要在于这里,data_path,我在代码中设置的是在当前文件夹下新建一个data文件夹,将你需要划分的数据集放入data文件夹下,data_root,为我门划分完的训练集和验证集所放置的位置,我这里设置的是在当前文件夹下,我这里提到的当前文件夹下,就是与这个程序放置的位置一致的位置。


image.png


简单来说即,在程序的当前文件夹下,新建一个data文件夹用来放置自己的数据集,然后直接运行程序即可,生成的训练集和训练集train文件夹和验证集val文件夹会生成在当前文件夹下。


image.png


划分过程ing


image.png


这里的split_rate = 0.1 #这里填多少 就是验证集的比例是多少,比如填0.1就是验证集的数量占总数据集的10%。


split_rate = 0.1 #这里填多少 就是验证集的比例是多少,比如填0.1就是验证集的数量占总数据集的10%

附上数据集划分完整代码:

import os
from shutil import copy, rmtree
import random
def make_file(file_path: str):
    if os.path.exists(file_path):
        # 如果文件夹存在,则先删除原文件夹在重新创建
        rmtree(file_path)
    os.makedirs(file_path)
# 保证随机可复现
random.seed(0)#保证每次随机抽取的都可以复现
# 将数据集中10%的数据划分到验证集中
split_rate = 0.1 #这里填多少 就是验证集的比例是多少,比如填0.1就是验证集的数量占总数据集的10%
data_path = './data'#数据集存放的地方,建议在程序所在的文件夹下新建一个data文件夹,将需要划分的数据集存放进去
data_root = './'  #这里是生成的训练集和验证集所处的位置,这里设置的是在当前文件夹下。
data_class = [cla for cla in os.listdir(data_path)]
print("数据的种类分别为:")
print(data_class)# 输出数据种类,数据种类默认为读取的文件夹的名称
# 建立保存训练集的文件夹
train_data_root = os.path.join(data_root, "train") #训练集的文件夹名称为 train
make_file(train_data_root)
for num_class in data_class:
    # 建立每个类别对应的文件夹
    make_file(os.path.join(train_data_root, num_class))
# 建立保存验证集的文件夹
val_data_root = os.path.join(data_root, "val")#验证集的文件夹名称为 val
make_file(val_data_root)
for num_class in data_class:
    # 建立每个类别对应的文件夹
    make_file(os.path.join(val_data_root, num_class))
for num_class in data_class:
    num_class_path = os.path.join(data_path, num_class)
    images = os.listdir(num_class_path)
    num = len(images)
    val_index = random.sample(images, k=int(num*split_rate))   #随机抽取图片
    for index, image in enumerate(images):
        if image in val_index:
            # 将划分到验证集中的文件复制到相应目录
            data_image_path = os.path.join(num_class_path, image)
            val_new_path = os.path.join(val_data_root, num_class)
            copy(data_image_path, val_new_path)
        else:
            # 将划分到训练集中的文件复制到相应目录
            data_image_path = os.path.join(num_class_path, image)
            train_new_path = os.path.join(train_data_root, num_class)
            copy(data_image_path, train_new_path)
    print("\r[{}] split_rating [{}/{}]".format(num_class, index+1, num), end="")  # processing bar
    print()
print("       ")
print("       ")
print("划分完成")
相关文章
|
3月前
|
测试技术 开发者 Python
Python单元测试入门:3个核心断言方法,帮你快速定位代码bug
本文介绍Python单元测试基础,详解`unittest`框架中的三大核心断言方法:`assertEqual`验证值相等,`assertTrue`和`assertFalse`判断条件真假。通过实例演示其用法,帮助开发者自动化检测代码逻辑,提升测试效率与可靠性。
332 1
|
4月前
|
机器学习/深度学习 数据采集 数据挖掘
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
基于 GARCH -LSTM 模型的混合方法进行时间序列预测研究(Python代码实现)
130 2
|
3月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
398 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
2月前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100种常见品类,已标注并划分为训练集与验证集,支持YOLO等深度学习模型。适用于中药分类、目标检测、AI辅助识别及教学应用,助力中医药智能化发展。
|
4月前
|
机器学习/深度学习 人工智能 监控
河道塑料瓶识别标准数据集 | 科研与项目必备(图片已划分、已标注)| 适用于YOLO系列深度学习分类检测任务【数据集分享】
随着城市化进程加快和塑料制品使用量增加,河道中的塑料垃圾问题日益严重。塑料瓶作为河道漂浮垃圾的主要类型,不仅破坏水体景观,还威胁水生生态系统的健康。传统的人工巡查方式效率低、成本高,难以满足实时监控与治理的需求。
|
4月前
|
机器学习/深度学习 人工智能 自动驾驶
7种交通场景数据集(千张图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
在智能交通与自动驾驶技术快速发展的今天,如何高效、准确地感知道路环境已经成为研究与应用的核心问题。车辆、行人和交通信号灯作为城市交通系统的关键元素,对道路安全与交通效率具有直接影响。然而,真实道路场景往往伴随 复杂光照、遮挡、多目标混杂以及交通信号状态多样化 等挑战,使得视觉识别与检测任务难度显著增加。
|
4月前
|
机器学习/深度学习 人工智能 监控
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
坐姿标准好坏姿态数据集的发布,填补了计算机视觉领域在“细分健康行为识别”上的空白。它不仅具有研究价值,更在实际应用层面具备广阔前景。从青少年的健康教育,到办公室的智能提醒,再到驾驶员的安全监控和康复训练,本数据集都能发挥巨大的作用。
坐姿标准好坏姿态数据集(图片已划分、已标注)|适用于YOLO系列深度学习分类检测任务【数据集分享】
|
4月前
|
机器学习/深度学习 数据采集 算法
PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】
在现代电子制造中,印刷电路板(PCB)是几乎所有电子设备的核心组成部分。随着PCB设计复杂度不断增加,人工检测PCB缺陷不仅效率低,而且容易漏检或误判。因此,利用计算机视觉和深度学习技术对PCB缺陷进行自动检测成为行业发展的必然趋势。
PCB电路板缺陷检测数据集(近千张图片已划分、已标注)| 适用于YOLO系列深度学习检测任务【数据集分享】
|
3月前
|
算法 调度 决策智能
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
【两阶段鲁棒优化】利用列-约束生成方法求解两阶段鲁棒优化问题(Python代码实现)
|
4月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
157 0

推荐镜像

更多