手撕Googlenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 手撕Googlenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

Googlenet是2014年被提出来的一种全新的神经网络结构,我个人认为他跟Resnet一样都是具有划时代意义的神经网络,当然他的意义不仅在于获得该年 ImageNet 竞赛中 Classification Task(分类任务)第一名,而是他跟Resnet一样都代表一种网络结构的改变,Resnet提出来残差网络结构,Googlenet提出了多尺度融合的网络结构,这种结构非常有意义。在目标检测领域应用非常广泛,目标检测的特征金字塔特征融合的方法和网络结构正是借鉴了googlenet的思想。因此学好googlenet对于后续学习yolo系列等目标检测网络具有重大意义。


下图是最开始的googlenet网络结构,可以看到它将一个输入分成多个分支进行不同的处理,然后最近再将不同的处理结果进行拼接,组成最后的输出结构。


                      image.png


这是之后的googlenet网络结构,加入1*1的卷积结构用于降低模型的参数数量(事实上这个trick在很多经典CNN模型中都有用,属于很常见的trick)


                image.png


googlenet的另一大创新点在于创造了多分类器,除了原来的主分类器之外,还增加了两个辅助分类器,这点有点类似模型融合,不过模型融合是参与模型的最终决策的,但是他的两个辅助分类器并不参与最终决策,只是在训练总损失的时候,总损失 = 主分类器的损失 + 0.3*辅助分类器1 + 0.3*辅助分类器2   识别过程中并不参与,只取主分类器的结果,而且求解验证集损失的时候也不取辅助分类器的结果,因为验证过程中模型时关闭辅助分类器的。光说有点难受,咱们来看图


论文里的图:


image.png


网络结构图:


7690239d06775d765a04b5c019a05120.png


接下来我们来看代码:


导入需要的库:

import torch
import torchvision
import torchvision.models
import torch.nn.functional as F
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
图像预处理: 将所有图像缩放成224*224进行处理
data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224), #图像预处理操作
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
    "val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

训练集数据和测试集数据的导入 :


将数据像挤牙膏似的一点一点的抽出去,设置相应的batc_size


自己的数据放在跟代码相同的文件夹下新建一个data文件夹,data文件夹里的新建一个train文件夹用于放置训练集的图片。同理新建一个val文件夹用于放置测试集的图片。

train_data = torchvision.datasets.ImageFolder(root = "./data/train" ,   transform = data_transform["train"]) #训练集
    traindata = DataLoader(dataset= train_data , batch_size= 32 , shuffle= True , num_workers=0 )   # 将训练数据以每次32张图片的形式抽出进行训练
    test_data = torchvision.datasets.ImageFolder(root = "./data/val" , transform = data_transform["val"]) # 将训练数据以每次32张图片的形式抽出进行测试
    train_size = len(train_data) # 训练集的长度
    test_size = len(test_data) # 测试集的长度
    print(train_size)  # 输出训练集长度看一下,相当于看看有几张图片
    print(test_size)  # 输出测试集长度看一下,相当于看看有几张图片
    testdata = DataLoader(dataset = test_data , batch_size= 32 , shuffle= True , num_workers=0 )

设置GPU 和 CPU的使用:

有GPU则调用GPU,没有的话就调用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
构建Googlenet网络:
  class GoogLeNet(nn.Module):
        def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):  #这是主分类器  aux_logits是true则启动使用辅助分类器,否则不启动
            super(GoogLeNet, self).__init__()
            self.aux_logits = aux_logits
            self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
            self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.conv2 = BasicConv2d(64, 64, kernel_size=1)
            self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
            self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
            self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
            self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
            self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
            self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
            self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
            self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
            self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
            if self.aux_logits:     #是否启用辅助分类器
                self.aux1 = InceptionAux(512, num_classes)
                self.aux2 = InceptionAux(528, num_classes)
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.dropout = nn.Dropout(0.4)
            self.fc = nn.Linear(1024, num_classes)
            if init_weights:  #是否使用初始化权重
                self._initialize_weights()
        def forward(self, x):
            # N x 3 x 224 x 224
            x = self.conv1(x)
            # N x 64 x 112 x 112
            x = self.maxpool1(x)
            # N x 64 x 56 x 56
            x = self.conv2(x)
            # N x 64 x 56 x 56
            x = self.conv3(x)
            # N x 192 x 56 x 56
            x = self.maxpool2(x)
            # N x 192 x 28 x 28
            x = self.inception3a(x)
            # N x 256 x 28 x 28
            x = self.inception3b(x)
            # N x 480 x 28 x 28
            x = self.maxpool3(x)
            # N x 480 x 14 x 14
            x = self.inception4a(x)
            # N x 512 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux1 = self.aux1(x)
            x = self.inception4b(x)
            # N x 512 x 14 x 14
            x = self.inception4c(x)
            # N x 512 x 14 x 14
            x = self.inception4d(x)
            # N x 528 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux2 = self.aux2(x)
            x = self.inception4e(x)
            # N x 832 x 14 x 14
            x = self.maxpool4(x)
            # N x 832 x 7 x 7
            x = self.inception5a(x)
            # N x 832 x 7 x 7
            x = self.inception5b(x)
            # N x 1024 x 7 x 7
            x = self.avgpool(x)
            # N x 1024 x 1 x 1
            x = torch.flatten(x, 1)
            # N x 1024
            x = self.dropout(x)
            x = self.fc(x)
            # N x 1000 (num_classes)
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                return x, aux2, aux1
            return x
        def _initialize_weights(self):#初始化权重的提房,有兴趣可以查查函数看看
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    if m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.normal_(m.weight, 0, 0.01)
                    nn.init.constant_(m.bias, 0)
    class Inception(nn.Module):          #搭建多分支架构的一部分
        def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5,
                     pool_proj):  # self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            super(Inception, self).__init__()
            self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
            self.branch2 = nn.Sequential(
                BasicConv2d(in_channels, ch3x3red, kernel_size=1),
                BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
            )
            self.branch3 = nn.Sequential(
                BasicConv2d(in_channels, ch5x5red, kernel_size=1),
                BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)  # 保证输出大小等于输入大小
            )
            self.branch4 = nn.Sequential(
                nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
                BasicConv2d(in_channels, pool_proj, kernel_size=1)
            )
        def forward(self, x):
            branch1 = self.branch1(x)
            branch2 = self.branch2(x)
            branch3 = self.branch3(x)
            branch4 = self.branch4(x)
            outputs = [branch1, branch2, branch3, branch4]
            return torch.cat(outputs, 1)
    class InceptionAux(nn.Module): #辅助分类器结构
        def __init__(self, in_channels, num_classes):
            super(InceptionAux, self).__init__()
            self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
            self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
            self.fc1 = nn.Linear(2048, 1024)
            self.fc2 = nn.Linear(1024, num_classes)
        def forward(self, x):
            # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
            x = self.averagePool(x)
            # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
            x = self.conv(x)
            # N x 128 x 4 x 4
            x = torch.flatten(x, 1)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 2048
            x = F.relu(self.fc1(x), inplace=True)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 1024
            x = self.fc2(x)
            # N x num_classes
            return x
    class BasicConv2d(nn.Module):
        def __init__(self, in_channels, out_channels, **kwargs):
            super(BasicConv2d, self).__init__()
            self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
            self.relu = nn.ReLU(inplace=True)
        def forward(self, x):
            x = self.conv(x)
            x = self.relu(x)
            return x

启动模型,测试模型输出:

googlenet = GoogLeNet(num_classes=7, aux_logits=True, init_weights=True)  #启动模型,这里的7就改成自己的数据集的种类即可,几种就改成几
    print(googlenet)  #打印出模型结构看看
    googlenet.to(device)  #将模型放到GPU上
    test1 = torch.ones(64, 3, 224, 224)  #输出一个测试数据看看模型的数据是几种的,是不是我们需要的种类
    test1_1 , test_2 , test_3 = googlenet(test1.to(device))#会输出三个分类器的结果,我们查看主分类器的输出最后是不是我们的种类数
    print(test1_1.shape)

 设置训练需要的参数,epoch,学习率learning 优化器。损失函数。


epoch = 10  # 迭代次数即训练次数
learning = 0.001  # 学习率
optimizer = torch.optim.Adam(net.parameters(), lr=learning)  # 使用Adam优化器-写论文的话可以具体查一下这个优化器的原理
loss = nn.CrossEntropyLoss()  # 损失计算方式,交叉熵损失函数

设置四个空数组,用来存放训练集的loss和accuracy    测试集的loss和 accuracy

train_loss_all = []  # 存放训练集损失的数组
    train_accur_all = []  # 存放训练集准确率的数组
    test_loss_all = []  # 存放测试集损失的数组
    test_accur_all = []  # 存放测试集准确率的数组

开始训练:

for i in range(epoch): #开始迭代
        train_loss = 0  #训练集的损失初始设为0
        train_num = 0.0
        train_accuracy = 0.0 #训练集的准确率初始设为0
        googlenet.train() #将模型设置成 训练模式,这里意味着启动辅助分类器
        train_bar = tqdm(traindata)  #用于进度条显示,没啥实际用处
        for step , data in enumerate(train_bar): #开始迭代跑, enumerate这个函数不懂可以查查,将训练集分为 data是序号,data是数据
            img , target = data #将data 分为 img图片,target标签
            optimizer.zero_grad()  # 清空历史梯度
            outputs_1 = googlenet(img.to(device))   # 将图片打入网络进行训练,outputs是输出的结果
            outputs , outputs1 , outputs2 = outputs_1 #因为googlenet有两个辅助分类器,所以会有三个分类结果
            loss1  = loss(outputs , target.to(device))  #第一个为主分类器的损失
            loss1_1 = loss(outputs1 , target.to(device))  #第二个是辅助分类器1的损失
            loss1_2 = loss(outputs2 , target.to(device))  #第三个是辅助分类器2的损失
            loss1_fin = loss1 + loss1_1 * 0.3 + loss1_2 * 0.3 #计算总损失
            outputs = torch.argmax(outputs, 1)   #计算准确率的时候 只是用主分类器的结果,辅助分类器只用来反向传播,防止梯度消失重点,牢记
            loss1_fin.backward() #神经网络反向传播
            optimizer.step()  #梯度优化 用上面的abam优化
            train_loss += abs(loss1_fin.item())*img.size(0) #将所有损失的绝对值加起来
            accuracy = torch.sum(outputs == target.to(device)) #outputs == target的 即使预测正确的,统计预测正确的个数,从而计算准确率
            train_accuracy = train_accuracy + accuracy  #求训练集的准确率
            train_num += img.size(0)
        print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i+1 , train_loss/train_num , train_accuracy/train_num))   #输出训练情况
        train_loss_all.append(train_loss/train_num)  #将训练的损失放到一个列表里 方便后续画图
        train_accur_all.append(train_accuracy.double().item()/train_num) #训练集的准确率

开始测试:

test_loss = 0  #同上 测试损失
        test_accuracy = 0.0  #测试准确率
        test_num = 0
        googlenet.eval()  #测试模式启动,关闭辅助分类器
        with torch.no_grad(): #清空历史梯度,进行测试  与训练最大的区别是测试过程中取消了反向传播
            test_bar = tqdm(testdata)
            for data in test_bar:
                img , target = data
                outputs_1 = googlenet(img.to(device))  #这个时候模型只有一个输出结果,因为关闭了辅助分类器
                loss2 = loss(outputs_1, target.to(device))
                outputs_1  = torch.argmax(outputs_1 , 1)
                test_loss = test_loss + abs(loss2.item())*img.size(0)
                accuracy = torch.sum(outputs_1  == target.to(device))
                test_accuracy = test_accuracy + accuracy
                test_num += img.size(0)
        print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
        test_loss_all.append(test_loss/test_num)
        test_accur_all.append(test_accuracy.double().item()/test_num)


绘制训练集loss和accuracy图 和测试集的loss和accuracy图:

plt.figure(figsize=(12,4))
    plt.subplot(1 , 2 , 1)
    plt.plot(range(epoch) , train_loss_all,
             "ro-",label = "Train loss")
    plt.plot(range(epoch), test_loss_all,
             "bs-",label = "test loss")
    plt.legend()
    plt.xlabel("epoch")
    plt.ylabel("Loss")
    plt.subplot(1, 2, 2)
    plt.plot(range(epoch) , train_accur_all,
             "ro-",label = "Train accur")
    plt.plot(range(epoch) , test_accur_all,
             "bs-",label = "test accur")
    plt.xlabel("epoch")
    plt.ylabel("acc")
    plt.legend()
    plt.show()
    torch.save(googlenet.state_dict(), "googlenet.pth") #保存模型
    print("模型已保存")

全部train训练代码:

import torch
import torchvision
import torchvision.models
import torch.nn.functional as F
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224), #图像预处理操作
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
    "val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
def main():
    train_data = torchvision.datasets.ImageFolder(root = "./data/train" ,   transform = data_transform["train"]) #训练集
    traindata = DataLoader(dataset= train_data , batch_size= 32 , shuffle= True , num_workers=0 )   # 将训练数据以每次32张图片的形式抽出进行训练
    test_data = torchvision.datasets.ImageFolder(root = "./data/val" , transform = data_transform["val"]) # 将训练数据以每次32张图片的形式抽出进行测试
    train_size = len(train_data) # 训练集的长度
    test_size = len(test_data) # 测试集的长度
    print(train_size)  # 输出训练集长度看一下,相当于看看有几张图片
    print(test_size)  # 输出测试集长度看一下,相当于看看有几张图片
    testdata = DataLoader(dataset = test_data , batch_size= 32 , shuffle= True , num_workers=0 )
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
    class GoogLeNet(nn.Module):
        def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):  #这是主分类器  aux_logits是true则启动使用辅助分类器,否则不启动
            super(GoogLeNet, self).__init__()
            self.aux_logits = aux_logits
            self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
            self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.conv2 = BasicConv2d(64, 64, kernel_size=1)
            self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
            self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
            self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
            self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
            self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
            self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
            self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
            self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
            self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
            if self.aux_logits:     #是否启用辅助分类器
                self.aux1 = InceptionAux(512, num_classes)
                self.aux2 = InceptionAux(528, num_classes)
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.dropout = nn.Dropout(0.4)
            self.fc = nn.Linear(1024, num_classes)
            if init_weights:  #是否使用初始化权重
                self._initialize_weights()
        def forward(self, x):
            # N x 3 x 224 x 224
            x = self.conv1(x)
            # N x 64 x 112 x 112
            x = self.maxpool1(x)
            # N x 64 x 56 x 56
            x = self.conv2(x)
            # N x 64 x 56 x 56
            x = self.conv3(x)
            # N x 192 x 56 x 56
            x = self.maxpool2(x)
            # N x 192 x 28 x 28
            x = self.inception3a(x)
            # N x 256 x 28 x 28
            x = self.inception3b(x)
            # N x 480 x 28 x 28
            x = self.maxpool3(x)
            # N x 480 x 14 x 14
            x = self.inception4a(x)
            # N x 512 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux1 = self.aux1(x)
            x = self.inception4b(x)
            # N x 512 x 14 x 14
            x = self.inception4c(x)
            # N x 512 x 14 x 14
            x = self.inception4d(x)
            # N x 528 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux2 = self.aux2(x)
            x = self.inception4e(x)
            # N x 832 x 14 x 14
            x = self.maxpool4(x)
            # N x 832 x 7 x 7
            x = self.inception5a(x)
            # N x 832 x 7 x 7
            x = self.inception5b(x)
            # N x 1024 x 7 x 7
            x = self.avgpool(x)
            # N x 1024 x 1 x 1
            x = torch.flatten(x, 1)
            # N x 1024
            x = self.dropout(x)
            x = self.fc(x)
            # N x 1000 (num_classes)
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                return x, aux2, aux1
            return x
        def _initialize_weights(self):#初始化权重的提房,有兴趣可以查查函数看看
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    if m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.normal_(m.weight, 0, 0.01)
                    nn.init.constant_(m.bias, 0)
    class Inception(nn.Module):          #搭建多分支架构的一部分
        def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5,
                     pool_proj):  # self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            super(Inception, self).__init__()
            self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
            self.branch2 = nn.Sequential(
                BasicConv2d(in_channels, ch3x3red, kernel_size=1),
                BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
            )
            self.branch3 = nn.Sequential(
                BasicConv2d(in_channels, ch5x5red, kernel_size=1),
                BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)  # 保证输出大小等于输入大小
            )
            self.branch4 = nn.Sequential(
                nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
                BasicConv2d(in_channels, pool_proj, kernel_size=1)
            )
        def forward(self, x):
            branch1 = self.branch1(x)
            branch2 = self.branch2(x)
            branch3 = self.branch3(x)
            branch4 = self.branch4(x)
            outputs = [branch1, branch2, branch3, branch4]
            return torch.cat(outputs, 1)
    class InceptionAux(nn.Module): #辅助分类器结构
        def __init__(self, in_channels, num_classes):
            super(InceptionAux, self).__init__()
            self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
            self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
            self.fc1 = nn.Linear(2048, 1024)
            self.fc2 = nn.Linear(1024, num_classes)
        def forward(self, x):
            # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
            x = self.averagePool(x)
            # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
            x = self.conv(x)
            # N x 128 x 4 x 4
            x = torch.flatten(x, 1)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 2048
            x = F.relu(self.fc1(x), inplace=True)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 1024
            x = self.fc2(x)
            # N x num_classes
            return x
    class BasicConv2d(nn.Module):
        def __init__(self, in_channels, out_channels, **kwargs):
            super(BasicConv2d, self).__init__()
            self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
            self.relu = nn.ReLU(inplace=True)
        def forward(self, x):
            x = self.conv(x)
            x = self.relu(x)
            return x
    googlenet = GoogLeNet(num_classes=7, aux_logits=True, init_weights=True)  #启动模型,这里的7就改成自己的数据集的种类即可,几种就改成几
    print(googlenet)  #打印出模型结构看看
    googlenet.to(device)  #将模型放到GPU上
    test1 = torch.ones(64, 3, 224, 224)  #输出一个测试数据看看模型的数据是几种的,是不是我们需要的种类
    test1_1 , test_2 , test_3 = googlenet(test1.to(device))#会输出三个分类器的结果,我们查看主分类器的输出最后是不是我们的种类数
    print(test1_1.shape)
    epoch  = 5  #训练额轮数
    learning = 0.001  #学习率
    optimizer = torch.optim.Adam(googlenet.parameters(), lr = learning)  #优化梯度下降器
    loss = nn.CrossEntropyLoss()  #设置损失函数,这里为交叉熵
    train_loss_all = []  # 存放训练集损失的数组
    train_accur_all = []  # 存放训练集准确率的数组
    test_loss_all = []  # 存放测试集损失的数组
    test_accur_all = []  # 存放测试集准确率的数组
    for i in range(epoch): #开始迭代
        train_loss = 0  #训练集的损失初始设为0
        train_num = 0.0
        train_accuracy = 0.0 #训练集的准确率初始设为0
        googlenet.train() #将模型设置成 训练模式,这里意味着启动辅助分类器
        train_bar = tqdm(traindata)  #用于进度条显示,没啥实际用处
        for step , data in enumerate(train_bar): #开始迭代跑, enumerate这个函数不懂可以查查,将训练集分为 data是序号,data是数据
            img , target = data #将data 分为 img图片,target标签
            optimizer.zero_grad()  # 清空历史梯度
            outputs_1 = googlenet(img.to(device))   # 将图片打入网络进行训练,outputs是输出的结果
            outputs , outputs1 , outputs2 = outputs_1 #因为googlenet有两个辅助分类器,所以会有三个分类结果
            loss1  = loss(outputs , target.to(device))  #第一个为主分类器的损失
            loss1_1 = loss(outputs1 , target.to(device))  #第二个是辅助分类器1的损失
            loss1_2 = loss(outputs2 , target.to(device))  #第三个是辅助分类器2的损失
            loss1_fin = loss1 + loss1_1 * 0.3 + loss1_2 * 0.3 #计算总损失
            outputs = torch.argmax(outputs, 1)   #计算准确率的时候 只是用主分类器的结果,辅助分类器只用来反向传播,防止梯度消失重点,牢记
            loss1_fin.backward() #神经网络反向传播
            optimizer.step()  #梯度优化 用上面的abam优化
            train_loss += abs(loss1_fin.item())*img.size(0) #将所有损失的绝对值加起来
            accuracy = torch.sum(outputs == target.to(device)) #outputs == target的 即使预测正确的,统计预测正确的个数,从而计算准确率
            train_accuracy = train_accuracy + accuracy  #求训练集的准确率
            train_num += img.size(0)
        print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i+1 , train_loss/train_num , train_accuracy/train_num))   #输出训练情况
        train_loss_all.append(train_loss/train_num)  #将训练的损失放到一个列表里 方便后续画图
        train_accur_all.append(train_accuracy.double().item()/train_num) #训练集的准确率
        test_loss = 0  #同上 测试损失
        test_accuracy = 0.0  #测试准确率
        test_num = 0
        googlenet.eval()  #测试模式启动,关闭辅助分类器
        with torch.no_grad(): #清空历史梯度,进行测试  与训练最大的区别是测试过程中取消了反向传播
            test_bar = tqdm(testdata)
            for data in test_bar:
                img , target = data
                outputs_1 = googlenet(img.to(device))  #这个时候模型只有一个输出结果,因为关闭了辅助分类器
                loss2 = loss(outputs_1, target.to(device))
                outputs_1  = torch.argmax(outputs_1 , 1)
                test_loss = test_loss + abs(loss2.item())*img.size(0)
                accuracy = torch.sum(outputs_1  == target.to(device))
                test_accuracy = test_accuracy + accuracy
                test_num += img.size(0)
        print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
        test_loss_all.append(test_loss/test_num)
        test_accur_all.append(test_accuracy.double().item()/test_num)
    plt.figure(figsize=(12,4))
    plt.subplot(1 , 2 , 1)
    plt.plot(range(epoch) , train_loss_all,
             "ro-",label = "Train loss")
    plt.plot(range(epoch), test_loss_all,
             "bs-",label = "test loss")
    plt.legend()
    plt.xlabel("epoch")
    plt.ylabel("Loss")
    plt.subplot(1, 2, 2)
    plt.plot(range(epoch) , train_accur_all,
             "ro-",label = "Train accur")
    plt.plot(range(epoch) , test_accur_all,
             "bs-",label = "test accur")
    plt.xlabel("epoch")
    plt.ylabel("acc")
    plt.legend()
    plt.show()
    torch.save(googlenet.state_dict(), "googlenet.pth")
    print("模型已保存")
if __name__ == '__main__':
    main()

全部predict代码:

import torch
from PIL import Image
from torch import nn
from torchvision.transforms import transforms
import torch.nn.functional as F
image_path = "1.JPG"#需要测试的图片放入当前文件夹下,这里改成自己的图片名即可
trans = transforms.Compose([transforms.Resize((224 , 224)),
                           transforms.ToTensor()])
image = Image.open(image_path)  # 打开图片
image = image.convert("RGB") # 将图片转换为RGB格式
image = trans(image) # 上述的缩放和转张量操作在这里实现
image = torch.unsqueeze(image, dim=0) # 将图片维度扩展一维
classes = ["1" , "2" , "3" , "4" , "5" , "6" , "7"]  # # 预测种类,这里改成自己的种类即可,从左到右对应自己的训练集种类排序的从左到右
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)
        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux1 = self.aux1(x)
        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux2 = self.aux2(x)
        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7
        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:  # eval model lose this layer
            return x, aux2, aux1
        return x
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5,
                 pool_proj):  # self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        super(Inception, self).__init__()
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
        )
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)  # 保证输出大小等于输入大小
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )
    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)
        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)
    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x
googlenet = GoogLeNet(num_classes=7, aux_logits=True, init_weights=True)
print(googlenet)
googlenet.to(device)
test1 = torch.ones(64, 3, 224, 224)
test1_1, test_2, test_3 = googlenet(test1.to(device))  # 会输出三个分类器的结果,我们查看主分类器的输出最后是不是我们的种类数
print(test1_1.shape)
googlenet.load_state_dict(torch.load("googlenet.pth", map_location=device))#训练得到的alexnet模型放入当前文件夹下
googlenet.to(device)
googlenet.eval()  # 关闭梯度,将模型调整为测试模式
with torch.no_grad():  # 梯度清零
    outputs = googlenet(image.to(device))  # 将图片打入神经网络进行测试
    # print(googlenet)  # 输出模型结构
    # print(outputs)  # 输出预测的张量数组
    ans = (outputs.argmax(1)).item()  # 最大的值即为预测结果,找出最大值在数组中的序号,
    # 对应找其在种类中的序号即可然后输出即为其种类
    print(classes[ans])


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
208 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
2月前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
233 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
29天前
|
机器学习/深度学习 人工智能 PyTorch
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
本文将系统阐述DPO的工作原理、实现机制,以及其与传统RLHF和SFT方法的本质区别。
85 22
使用PyTorch实现GPT-2直接偏好优化训练:DPO方法改进及其与监督微调的效果对比
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
用MASM32按Time Protocol(RFC868)协议编写网络对时程序中的一些有用的函数代码
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
90 8
|
3月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
132 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
4月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
201 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
165 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
4月前
|
安全 C#
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
某网络硬盘网站被植入传播Trojan.DL.Inject.xz等的代码
|
3月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘

热门文章

最新文章