手撕Googlenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 手撕Googlenet卷积神经网络-pytorch-详细注释版(可以直接替换自己数据集)-直接放置自己的数据集就能直接跑。跑的代码有问题的可以在评论区指出,看到了会回复。训练代码和预测代码均有。

Googlenet是2014年被提出来的一种全新的神经网络结构,我个人认为他跟Resnet一样都是具有划时代意义的神经网络,当然他的意义不仅在于获得该年 ImageNet 竞赛中 Classification Task(分类任务)第一名,而是他跟Resnet一样都代表一种网络结构的改变,Resnet提出来残差网络结构,Googlenet提出了多尺度融合的网络结构,这种结构非常有意义。在目标检测领域应用非常广泛,目标检测的特征金字塔特征融合的方法和网络结构正是借鉴了googlenet的思想。因此学好googlenet对于后续学习yolo系列等目标检测网络具有重大意义。


下图是最开始的googlenet网络结构,可以看到它将一个输入分成多个分支进行不同的处理,然后最近再将不同的处理结果进行拼接,组成最后的输出结构。


                      image.png


这是之后的googlenet网络结构,加入1*1的卷积结构用于降低模型的参数数量(事实上这个trick在很多经典CNN模型中都有用,属于很常见的trick)


                image.png


googlenet的另一大创新点在于创造了多分类器,除了原来的主分类器之外,还增加了两个辅助分类器,这点有点类似模型融合,不过模型融合是参与模型的最终决策的,但是他的两个辅助分类器并不参与最终决策,只是在训练总损失的时候,总损失 = 主分类器的损失 + 0.3*辅助分类器1 + 0.3*辅助分类器2   识别过程中并不参与,只取主分类器的结果,而且求解验证集损失的时候也不取辅助分类器的结果,因为验证过程中模型时关闭辅助分类器的。光说有点难受,咱们来看图


论文里的图:


image.png


网络结构图:


7690239d06775d765a04b5c019a05120.png


接下来我们来看代码:


导入需要的库:

import torch
import torchvision
import torchvision.models
import torch.nn.functional as F
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
图像预处理: 将所有图像缩放成224*224进行处理
data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224), #图像预处理操作
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
    "val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

训练集数据和测试集数据的导入 :


将数据像挤牙膏似的一点一点的抽出去,设置相应的batc_size


自己的数据放在跟代码相同的文件夹下新建一个data文件夹,data文件夹里的新建一个train文件夹用于放置训练集的图片。同理新建一个val文件夹用于放置测试集的图片。

train_data = torchvision.datasets.ImageFolder(root = "./data/train" ,   transform = data_transform["train"]) #训练集
    traindata = DataLoader(dataset= train_data , batch_size= 32 , shuffle= True , num_workers=0 )   # 将训练数据以每次32张图片的形式抽出进行训练
    test_data = torchvision.datasets.ImageFolder(root = "./data/val" , transform = data_transform["val"]) # 将训练数据以每次32张图片的形式抽出进行测试
    train_size = len(train_data) # 训练集的长度
    test_size = len(test_data) # 测试集的长度
    print(train_size)  # 输出训练集长度看一下,相当于看看有几张图片
    print(test_size)  # 输出测试集长度看一下,相当于看看有几张图片
    testdata = DataLoader(dataset = test_data , batch_size= 32 , shuffle= True , num_workers=0 )

设置GPU 和 CPU的使用:

有GPU则调用GPU,没有的话就调用CPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
构建Googlenet网络:
  class GoogLeNet(nn.Module):
        def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):  #这是主分类器  aux_logits是true则启动使用辅助分类器,否则不启动
            super(GoogLeNet, self).__init__()
            self.aux_logits = aux_logits
            self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
            self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.conv2 = BasicConv2d(64, 64, kernel_size=1)
            self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
            self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
            self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
            self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
            self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
            self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
            self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
            self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
            self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
            if self.aux_logits:     #是否启用辅助分类器
                self.aux1 = InceptionAux(512, num_classes)
                self.aux2 = InceptionAux(528, num_classes)
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.dropout = nn.Dropout(0.4)
            self.fc = nn.Linear(1024, num_classes)
            if init_weights:  #是否使用初始化权重
                self._initialize_weights()
        def forward(self, x):
            # N x 3 x 224 x 224
            x = self.conv1(x)
            # N x 64 x 112 x 112
            x = self.maxpool1(x)
            # N x 64 x 56 x 56
            x = self.conv2(x)
            # N x 64 x 56 x 56
            x = self.conv3(x)
            # N x 192 x 56 x 56
            x = self.maxpool2(x)
            # N x 192 x 28 x 28
            x = self.inception3a(x)
            # N x 256 x 28 x 28
            x = self.inception3b(x)
            # N x 480 x 28 x 28
            x = self.maxpool3(x)
            # N x 480 x 14 x 14
            x = self.inception4a(x)
            # N x 512 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux1 = self.aux1(x)
            x = self.inception4b(x)
            # N x 512 x 14 x 14
            x = self.inception4c(x)
            # N x 512 x 14 x 14
            x = self.inception4d(x)
            # N x 528 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux2 = self.aux2(x)
            x = self.inception4e(x)
            # N x 832 x 14 x 14
            x = self.maxpool4(x)
            # N x 832 x 7 x 7
            x = self.inception5a(x)
            # N x 832 x 7 x 7
            x = self.inception5b(x)
            # N x 1024 x 7 x 7
            x = self.avgpool(x)
            # N x 1024 x 1 x 1
            x = torch.flatten(x, 1)
            # N x 1024
            x = self.dropout(x)
            x = self.fc(x)
            # N x 1000 (num_classes)
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                return x, aux2, aux1
            return x
        def _initialize_weights(self):#初始化权重的提房,有兴趣可以查查函数看看
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    if m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.normal_(m.weight, 0, 0.01)
                    nn.init.constant_(m.bias, 0)
    class Inception(nn.Module):          #搭建多分支架构的一部分
        def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5,
                     pool_proj):  # self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            super(Inception, self).__init__()
            self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
            self.branch2 = nn.Sequential(
                BasicConv2d(in_channels, ch3x3red, kernel_size=1),
                BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
            )
            self.branch3 = nn.Sequential(
                BasicConv2d(in_channels, ch5x5red, kernel_size=1),
                BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)  # 保证输出大小等于输入大小
            )
            self.branch4 = nn.Sequential(
                nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
                BasicConv2d(in_channels, pool_proj, kernel_size=1)
            )
        def forward(self, x):
            branch1 = self.branch1(x)
            branch2 = self.branch2(x)
            branch3 = self.branch3(x)
            branch4 = self.branch4(x)
            outputs = [branch1, branch2, branch3, branch4]
            return torch.cat(outputs, 1)
    class InceptionAux(nn.Module): #辅助分类器结构
        def __init__(self, in_channels, num_classes):
            super(InceptionAux, self).__init__()
            self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
            self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
            self.fc1 = nn.Linear(2048, 1024)
            self.fc2 = nn.Linear(1024, num_classes)
        def forward(self, x):
            # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
            x = self.averagePool(x)
            # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
            x = self.conv(x)
            # N x 128 x 4 x 4
            x = torch.flatten(x, 1)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 2048
            x = F.relu(self.fc1(x), inplace=True)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 1024
            x = self.fc2(x)
            # N x num_classes
            return x
    class BasicConv2d(nn.Module):
        def __init__(self, in_channels, out_channels, **kwargs):
            super(BasicConv2d, self).__init__()
            self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
            self.relu = nn.ReLU(inplace=True)
        def forward(self, x):
            x = self.conv(x)
            x = self.relu(x)
            return x

启动模型,测试模型输出:

googlenet = GoogLeNet(num_classes=7, aux_logits=True, init_weights=True)  #启动模型,这里的7就改成自己的数据集的种类即可,几种就改成几
    print(googlenet)  #打印出模型结构看看
    googlenet.to(device)  #将模型放到GPU上
    test1 = torch.ones(64, 3, 224, 224)  #输出一个测试数据看看模型的数据是几种的,是不是我们需要的种类
    test1_1 , test_2 , test_3 = googlenet(test1.to(device))#会输出三个分类器的结果,我们查看主分类器的输出最后是不是我们的种类数
    print(test1_1.shape)

 设置训练需要的参数,epoch,学习率learning 优化器。损失函数。


epoch = 10  # 迭代次数即训练次数
learning = 0.001  # 学习率
optimizer = torch.optim.Adam(net.parameters(), lr=learning)  # 使用Adam优化器-写论文的话可以具体查一下这个优化器的原理
loss = nn.CrossEntropyLoss()  # 损失计算方式,交叉熵损失函数

设置四个空数组,用来存放训练集的loss和accuracy    测试集的loss和 accuracy

train_loss_all = []  # 存放训练集损失的数组
    train_accur_all = []  # 存放训练集准确率的数组
    test_loss_all = []  # 存放测试集损失的数组
    test_accur_all = []  # 存放测试集准确率的数组

开始训练:

for i in range(epoch): #开始迭代
        train_loss = 0  #训练集的损失初始设为0
        train_num = 0.0
        train_accuracy = 0.0 #训练集的准确率初始设为0
        googlenet.train() #将模型设置成 训练模式,这里意味着启动辅助分类器
        train_bar = tqdm(traindata)  #用于进度条显示,没啥实际用处
        for step , data in enumerate(train_bar): #开始迭代跑, enumerate这个函数不懂可以查查,将训练集分为 data是序号,data是数据
            img , target = data #将data 分为 img图片,target标签
            optimizer.zero_grad()  # 清空历史梯度
            outputs_1 = googlenet(img.to(device))   # 将图片打入网络进行训练,outputs是输出的结果
            outputs , outputs1 , outputs2 = outputs_1 #因为googlenet有两个辅助分类器,所以会有三个分类结果
            loss1  = loss(outputs , target.to(device))  #第一个为主分类器的损失
            loss1_1 = loss(outputs1 , target.to(device))  #第二个是辅助分类器1的损失
            loss1_2 = loss(outputs2 , target.to(device))  #第三个是辅助分类器2的损失
            loss1_fin = loss1 + loss1_1 * 0.3 + loss1_2 * 0.3 #计算总损失
            outputs = torch.argmax(outputs, 1)   #计算准确率的时候 只是用主分类器的结果,辅助分类器只用来反向传播,防止梯度消失重点,牢记
            loss1_fin.backward() #神经网络反向传播
            optimizer.step()  #梯度优化 用上面的abam优化
            train_loss += abs(loss1_fin.item())*img.size(0) #将所有损失的绝对值加起来
            accuracy = torch.sum(outputs == target.to(device)) #outputs == target的 即使预测正确的,统计预测正确的个数,从而计算准确率
            train_accuracy = train_accuracy + accuracy  #求训练集的准确率
            train_num += img.size(0)
        print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i+1 , train_loss/train_num , train_accuracy/train_num))   #输出训练情况
        train_loss_all.append(train_loss/train_num)  #将训练的损失放到一个列表里 方便后续画图
        train_accur_all.append(train_accuracy.double().item()/train_num) #训练集的准确率

开始测试:

test_loss = 0  #同上 测试损失
        test_accuracy = 0.0  #测试准确率
        test_num = 0
        googlenet.eval()  #测试模式启动,关闭辅助分类器
        with torch.no_grad(): #清空历史梯度,进行测试  与训练最大的区别是测试过程中取消了反向传播
            test_bar = tqdm(testdata)
            for data in test_bar:
                img , target = data
                outputs_1 = googlenet(img.to(device))  #这个时候模型只有一个输出结果,因为关闭了辅助分类器
                loss2 = loss(outputs_1, target.to(device))
                outputs_1  = torch.argmax(outputs_1 , 1)
                test_loss = test_loss + abs(loss2.item())*img.size(0)
                accuracy = torch.sum(outputs_1  == target.to(device))
                test_accuracy = test_accuracy + accuracy
                test_num += img.size(0)
        print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
        test_loss_all.append(test_loss/test_num)
        test_accur_all.append(test_accuracy.double().item()/test_num)


绘制训练集loss和accuracy图 和测试集的loss和accuracy图:

plt.figure(figsize=(12,4))
    plt.subplot(1 , 2 , 1)
    plt.plot(range(epoch) , train_loss_all,
             "ro-",label = "Train loss")
    plt.plot(range(epoch), test_loss_all,
             "bs-",label = "test loss")
    plt.legend()
    plt.xlabel("epoch")
    plt.ylabel("Loss")
    plt.subplot(1, 2, 2)
    plt.plot(range(epoch) , train_accur_all,
             "ro-",label = "Train accur")
    plt.plot(range(epoch) , test_accur_all,
             "bs-",label = "test accur")
    plt.xlabel("epoch")
    plt.ylabel("acc")
    plt.legend()
    plt.show()
    torch.save(googlenet.state_dict(), "googlenet.pth") #保存模型
    print("模型已保存")

全部train训练代码:

import torch
import torchvision
import torchvision.models
import torch.nn.functional as F
from matplotlib import pyplot as plt
from tqdm import tqdm
from torch import nn
from torch.utils.data import DataLoader
from torchvision.transforms import transforms
data_transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224), #图像预处理操作
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
    "val": transforms.Compose([transforms.Resize((224, 224)),  # cannot 224, must (224, 224)
                               transforms.ToTensor(),
                               transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}
def main():
    train_data = torchvision.datasets.ImageFolder(root = "./data/train" ,   transform = data_transform["train"]) #训练集
    traindata = DataLoader(dataset= train_data , batch_size= 32 , shuffle= True , num_workers=0 )   # 将训练数据以每次32张图片的形式抽出进行训练
    test_data = torchvision.datasets.ImageFolder(root = "./data/val" , transform = data_transform["val"]) # 将训练数据以每次32张图片的形式抽出进行测试
    train_size = len(train_data) # 训练集的长度
    test_size = len(test_data) # 测试集的长度
    print(train_size)  # 输出训练集长度看一下,相当于看看有几张图片
    print(test_size)  # 输出测试集长度看一下,相当于看看有几张图片
    testdata = DataLoader(dataset = test_data , batch_size= 32 , shuffle= True , num_workers=0 )
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))
    class GoogLeNet(nn.Module):
        def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):  #这是主分类器  aux_logits是true则启动使用辅助分类器,否则不启动
            super(GoogLeNet, self).__init__()
            self.aux_logits = aux_logits
            self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
            self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.conv2 = BasicConv2d(64, 64, kernel_size=1)
            self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
            self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
            self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
            self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
            self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
            self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
            self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
            self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
            self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
            self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
            if self.aux_logits:     #是否启用辅助分类器
                self.aux1 = InceptionAux(512, num_classes)
                self.aux2 = InceptionAux(528, num_classes)
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
            self.dropout = nn.Dropout(0.4)
            self.fc = nn.Linear(1024, num_classes)
            if init_weights:  #是否使用初始化权重
                self._initialize_weights()
        def forward(self, x):
            # N x 3 x 224 x 224
            x = self.conv1(x)
            # N x 64 x 112 x 112
            x = self.maxpool1(x)
            # N x 64 x 56 x 56
            x = self.conv2(x)
            # N x 64 x 56 x 56
            x = self.conv3(x)
            # N x 192 x 56 x 56
            x = self.maxpool2(x)
            # N x 192 x 28 x 28
            x = self.inception3a(x)
            # N x 256 x 28 x 28
            x = self.inception3b(x)
            # N x 480 x 28 x 28
            x = self.maxpool3(x)
            # N x 480 x 14 x 14
            x = self.inception4a(x)
            # N x 512 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux1 = self.aux1(x)
            x = self.inception4b(x)
            # N x 512 x 14 x 14
            x = self.inception4c(x)
            # N x 512 x 14 x 14
            x = self.inception4d(x)
            # N x 528 x 14 x 14
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                aux2 = self.aux2(x)
            x = self.inception4e(x)
            # N x 832 x 14 x 14
            x = self.maxpool4(x)
            # N x 832 x 7 x 7
            x = self.inception5a(x)
            # N x 832 x 7 x 7
            x = self.inception5b(x)
            # N x 1024 x 7 x 7
            x = self.avgpool(x)
            # N x 1024 x 1 x 1
            x = torch.flatten(x, 1)
            # N x 1024
            x = self.dropout(x)
            x = self.fc(x)
            # N x 1000 (num_classes)
            if self.training and self.aux_logits:  # eval model lose this layer# eval model lose this layer 如果为训练模型则使用辅助分类器,验证模型则关闭辅助分类器
                return x, aux2, aux1
            return x
        def _initialize_weights(self):#初始化权重的提房,有兴趣可以查查函数看看
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    if m.bias is not None:
                        nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Linear):
                    nn.init.normal_(m.weight, 0, 0.01)
                    nn.init.constant_(m.bias, 0)
    class Inception(nn.Module):          #搭建多分支架构的一部分
        def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5,
                     pool_proj):  # self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
            super(Inception, self).__init__()
            self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
            self.branch2 = nn.Sequential(
                BasicConv2d(in_channels, ch3x3red, kernel_size=1),
                BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
            )
            self.branch3 = nn.Sequential(
                BasicConv2d(in_channels, ch5x5red, kernel_size=1),
                BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)  # 保证输出大小等于输入大小
            )
            self.branch4 = nn.Sequential(
                nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
                BasicConv2d(in_channels, pool_proj, kernel_size=1)
            )
        def forward(self, x):
            branch1 = self.branch1(x)
            branch2 = self.branch2(x)
            branch3 = self.branch3(x)
            branch4 = self.branch4(x)
            outputs = [branch1, branch2, branch3, branch4]
            return torch.cat(outputs, 1)
    class InceptionAux(nn.Module): #辅助分类器结构
        def __init__(self, in_channels, num_classes):
            super(InceptionAux, self).__init__()
            self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
            self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
            self.fc1 = nn.Linear(2048, 1024)
            self.fc2 = nn.Linear(1024, num_classes)
        def forward(self, x):
            # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
            x = self.averagePool(x)
            # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
            x = self.conv(x)
            # N x 128 x 4 x 4
            x = torch.flatten(x, 1)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 2048
            x = F.relu(self.fc1(x), inplace=True)
            x = F.dropout(x, 0.5, training=self.training)
            # N x 1024
            x = self.fc2(x)
            # N x num_classes
            return x
    class BasicConv2d(nn.Module):
        def __init__(self, in_channels, out_channels, **kwargs):
            super(BasicConv2d, self).__init__()
            self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
            self.relu = nn.ReLU(inplace=True)
        def forward(self, x):
            x = self.conv(x)
            x = self.relu(x)
            return x
    googlenet = GoogLeNet(num_classes=7, aux_logits=True, init_weights=True)  #启动模型,这里的7就改成自己的数据集的种类即可,几种就改成几
    print(googlenet)  #打印出模型结构看看
    googlenet.to(device)  #将模型放到GPU上
    test1 = torch.ones(64, 3, 224, 224)  #输出一个测试数据看看模型的数据是几种的,是不是我们需要的种类
    test1_1 , test_2 , test_3 = googlenet(test1.to(device))#会输出三个分类器的结果,我们查看主分类器的输出最后是不是我们的种类数
    print(test1_1.shape)
    epoch  = 5  #训练额轮数
    learning = 0.001  #学习率
    optimizer = torch.optim.Adam(googlenet.parameters(), lr = learning)  #优化梯度下降器
    loss = nn.CrossEntropyLoss()  #设置损失函数,这里为交叉熵
    train_loss_all = []  # 存放训练集损失的数组
    train_accur_all = []  # 存放训练集准确率的数组
    test_loss_all = []  # 存放测试集损失的数组
    test_accur_all = []  # 存放测试集准确率的数组
    for i in range(epoch): #开始迭代
        train_loss = 0  #训练集的损失初始设为0
        train_num = 0.0
        train_accuracy = 0.0 #训练集的准确率初始设为0
        googlenet.train() #将模型设置成 训练模式,这里意味着启动辅助分类器
        train_bar = tqdm(traindata)  #用于进度条显示,没啥实际用处
        for step , data in enumerate(train_bar): #开始迭代跑, enumerate这个函数不懂可以查查,将训练集分为 data是序号,data是数据
            img , target = data #将data 分为 img图片,target标签
            optimizer.zero_grad()  # 清空历史梯度
            outputs_1 = googlenet(img.to(device))   # 将图片打入网络进行训练,outputs是输出的结果
            outputs , outputs1 , outputs2 = outputs_1 #因为googlenet有两个辅助分类器,所以会有三个分类结果
            loss1  = loss(outputs , target.to(device))  #第一个为主分类器的损失
            loss1_1 = loss(outputs1 , target.to(device))  #第二个是辅助分类器1的损失
            loss1_2 = loss(outputs2 , target.to(device))  #第三个是辅助分类器2的损失
            loss1_fin = loss1 + loss1_1 * 0.3 + loss1_2 * 0.3 #计算总损失
            outputs = torch.argmax(outputs, 1)   #计算准确率的时候 只是用主分类器的结果,辅助分类器只用来反向传播,防止梯度消失重点,牢记
            loss1_fin.backward() #神经网络反向传播
            optimizer.step()  #梯度优化 用上面的abam优化
            train_loss += abs(loss1_fin.item())*img.size(0) #将所有损失的绝对值加起来
            accuracy = torch.sum(outputs == target.to(device)) #outputs == target的 即使预测正确的,统计预测正确的个数,从而计算准确率
            train_accuracy = train_accuracy + accuracy  #求训练集的准确率
            train_num += img.size(0)
        print("epoch:{} , train-Loss:{} , train-accuracy:{}".format(i+1 , train_loss/train_num , train_accuracy/train_num))   #输出训练情况
        train_loss_all.append(train_loss/train_num)  #将训练的损失放到一个列表里 方便后续画图
        train_accur_all.append(train_accuracy.double().item()/train_num) #训练集的准确率
        test_loss = 0  #同上 测试损失
        test_accuracy = 0.0  #测试准确率
        test_num = 0
        googlenet.eval()  #测试模式启动,关闭辅助分类器
        with torch.no_grad(): #清空历史梯度,进行测试  与训练最大的区别是测试过程中取消了反向传播
            test_bar = tqdm(testdata)
            for data in test_bar:
                img , target = data
                outputs_1 = googlenet(img.to(device))  #这个时候模型只有一个输出结果,因为关闭了辅助分类器
                loss2 = loss(outputs_1, target.to(device))
                outputs_1  = torch.argmax(outputs_1 , 1)
                test_loss = test_loss + abs(loss2.item())*img.size(0)
                accuracy = torch.sum(outputs_1  == target.to(device))
                test_accuracy = test_accuracy + accuracy
                test_num += img.size(0)
        print("test-Loss:{} , test-accuracy:{}".format(test_loss / test_num, test_accuracy / test_num))
        test_loss_all.append(test_loss/test_num)
        test_accur_all.append(test_accuracy.double().item()/test_num)
    plt.figure(figsize=(12,4))
    plt.subplot(1 , 2 , 1)
    plt.plot(range(epoch) , train_loss_all,
             "ro-",label = "Train loss")
    plt.plot(range(epoch), test_loss_all,
             "bs-",label = "test loss")
    plt.legend()
    plt.xlabel("epoch")
    plt.ylabel("Loss")
    plt.subplot(1, 2, 2)
    plt.plot(range(epoch) , train_accur_all,
             "ro-",label = "Train accur")
    plt.plot(range(epoch) , test_accur_all,
             "bs-",label = "test accur")
    plt.xlabel("epoch")
    plt.ylabel("acc")
    plt.legend()
    plt.show()
    torch.save(googlenet.state_dict(), "googlenet.pth")
    print("模型已保存")
if __name__ == '__main__':
    main()

全部predict代码:

import torch
from PIL import Image
from torch import nn
from torchvision.transforms import transforms
import torch.nn.functional as F
image_path = "1.JPG"#需要测试的图片放入当前文件夹下,这里改成自己的图片名即可
trans = transforms.Compose([transforms.Resize((224 , 224)),
                           transforms.ToTensor()])
image = Image.open(image_path)  # 打开图片
image = image.convert("RGB") # 将图片转换为RGB格式
image = trans(image) # 上述的缩放和转张量操作在这里实现
image = torch.unsqueeze(image, dim=0) # 将图片维度扩展一维
classes = ["1" , "2" , "3" , "4" , "5" , "6" , "7"]  # # 预测种类,这里改成自己的种类即可,从左到右对应自己的训练集种类排序的从左到右
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("using {} device.".format(device))
class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits
        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)
        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)
        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()
    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)
        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux1 = self.aux1(x)
        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:  # eval model lose this layer
            aux2 = self.aux2(x)
        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7
        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:  # eval model lose this layer
            return x, aux2, aux1
        return x
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5,
                 pool_proj):  # self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        super(Inception, self).__init__()
        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)
        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)  # 保证输出大小等于输入大小
        )
        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)  # 保证输出大小等于输入大小
        )
        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )
    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)
        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)
class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]
        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)
    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x
class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)
    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x
googlenet = GoogLeNet(num_classes=7, aux_logits=True, init_weights=True)
print(googlenet)
googlenet.to(device)
test1 = torch.ones(64, 3, 224, 224)
test1_1, test_2, test_3 = googlenet(test1.to(device))  # 会输出三个分类器的结果,我们查看主分类器的输出最后是不是我们的种类数
print(test1_1.shape)
googlenet.load_state_dict(torch.load("googlenet.pth", map_location=device))#训练得到的alexnet模型放入当前文件夹下
googlenet.to(device)
googlenet.eval()  # 关闭梯度,将模型调整为测试模式
with torch.no_grad():  # 梯度清零
    outputs = googlenet(image.to(device))  # 将图片打入神经网络进行测试
    # print(googlenet)  # 输出模型结构
    # print(outputs)  # 输出预测的张量数组
    ans = (outputs.argmax(1)).item()  # 最大的值即为预测结果,找出最大值在数组中的序号,
    # 对应找其在种类中的序号即可然后输出即为其种类
    print(classes[ans])


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
112 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
63 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
2月前
|
机器学习/深度学习 数据可视化 测试技术
YOLO11实战:新颖的多尺度卷积注意力(MSCA)加在网络不同位置的涨点情况 | 创新点如何在自己数据集上高效涨点,解决不涨点掉点等问题
本文探讨了创新点在自定义数据集上表现不稳定的问题,分析了不同数据集和网络位置对创新效果的影响。通过在YOLO11的不同位置引入MSCAAttention模块,展示了三种不同的改进方案及其效果。实验结果显示,改进方案在mAP50指标上分别提升了至0.788、0.792和0.775。建议多尝试不同配置,找到最适合特定数据集的解决方案。
403 0
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
58 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 算法 TensorFlow
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
358 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
|
3月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
2月前
|
机器学习/深度学习 算法
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
【机器学习】揭秘反向传播:深度学习中神经网络训练的奥秘
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
2月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
235 2
|
2月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
61 8
利用 PyTorch Lightning 搭建一个文本分类模型