python数据分析-pandas基础3-数据对齐

简介: 因为有索引的存在,Series和DataFrame在进行数据操作的时候,会自动进行数据对齐

索引是pandas两个重要数据结构Series和DataFrame的重要组成部分,默认的索引是以0开始序列,也可以自定义数据。

因为有索引的存在,Series和DataFrame在进行数据操作的时候,会自动进行数据对齐。

我们来看一个例子:

import pandas as pd
s1 = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([1, 2, 3, 4], index=['e', 'b', 'c', 'd'])

s3 = s1 + s2

# a    NaN
# b    4.0
# c    6.0
# d    8.0
# e    NaN
# dtype: float64

从上面可知,s1和s2具有不同的索引,s1 + s2 并不是Series中的数据按序相加,而是自动按照索引进行对齐,有时候我们可以利用这个特性进行数据处理,有时候需要注意这种特性会产生和预期不同的结果。

如果我们需要对s1和s2按序相加要怎么办? 这个时候需要对索引进行重置成默认序列索引,在进行相加。

s1.reset_index(drop=True) + s2.reset_index(drop=True)

# 0    2
# 1    4
# 2    6
# 3    8
# dtype: int64

上面可知,通过reset_index将索引重置到0到3, 相加就是按序相加。

reset_index默认会将索引作为新的一列增加到数据中, 如果你不需要索引可以指定drop=True

s1.reset_index()
#     index    0
# 0    a    1
# 1    b    2
# 2    c    3
# 3    d    4

希望对你有帮助。

目录
相关文章
|
27天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
【10月更文挑战第42天】本文是一篇技术性文章,旨在为初学者提供一份关于如何使用Python进行数据分析的入门指南。我们将从安装必要的工具开始,然后逐步介绍如何导入数据、处理数据、进行数据可视化以及建立预测模型。本文的目标是帮助读者理解数据分析的基本步骤和方法,并通过实际的代码示例来加深理解。
56 3
|
1月前
|
存储 机器学习/深度学习 数据可视化
数据集中存在大量的重复值,会对后续的数据分析和处理产生什么影响?
数据集中存在大量重复值可能会对后续的数据分析和处理产生多方面的负面影响
115 56
|
11天前
|
数据采集 监控 数据挖掘
常用电商商品数据API接口(item get)概述,数据分析以及上货
电商商品数据API接口(item get)是电商平台上用于提供商品详细信息的接口。这些接口允许开发者或系统以编程方式获取商品的详细信息,包括但不限于商品的标题、价格、库存、图片、销量、规格参数、用户评价等。这些信息对于电商业务来说至关重要,是商品数据分析、价格监控、上货策略制定等工作的基础。
|
1月前
|
存储 数据可视化 数据挖掘
使用Python进行数据分析和可视化
本文将引导你理解如何使用Python进行数据分析和可视化。我们将从基础的数据结构开始,逐步深入到数据处理和分析的方法,最后通过实际的代码示例来展示如何创建直观的数据可视化。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和技巧。让我们一起探索数据的世界,发现隐藏在数字背后的故事!
|
1月前
|
存储 数据可视化 数据挖掘
Python数据分析项目:抖音短视频达人粉丝增长趋势
Python数据分析项目:抖音短视频达人粉丝增长趋势
|
1月前
|
数据采集 存储 数据可视化
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
Python数据分析:揭秘"黑神话:悟空"Steam用户评论趋势
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第42天】本文将介绍如何使用Python进行数据分析和可视化。我们将从数据导入、清洗、探索性分析、建模预测,以及结果的可视化展示等方面展开讲解。通过这篇文章,你将了解到Python在数据处理和分析中的强大功能,以及如何利用这些工具来提升你的工作效率。
|
1月前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
1月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践