《MATLAB神经网络超级学习手册》——导读

简介: 人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。


screenshot


**
前言
**
MATLAB是国际上公认的最优秀的数值计算和仿真分析软件之一,并且具有很强的开放性。到目前为止,MATLAB平台已经推出了几十种针对不同应用的工具箱,其中为满足神经网络研究而开发的神经网络工具箱是其重要组成部分。

人工神经网络(Artificial Neural Network,ANN),是一种模仿生物神经网络的结构和功能的数学模型或计算模型。神经网络由大量的人工神经元联结进行计算。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。大多数情况下,人工神经网络能在外界信息的基础上改变内部结构,是一种自适应系统。

神经网络的研究可以分为理论研究和应用研究两大方面。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能,构建专家系统等。

本书基于MATLAB R2013a软件详细讲解进行神经网络设计的方法和技巧,同时给出了MATLAB在神经网络方面的应用。

目录

[第1章 MATLAB简介
1.1 MATLAB的发展](https://yq.aliyun.com/articles/107698)
1.2 MATLAB的特点及应用领域
1.3 MATLAB R2013a的安装
1.4 MATLAB R2013a的工作环境
1.5 MATLAB R2013a的帮助系统
1.6 本章小结
[第2章 MATLAB基础
2.1 基本概念](https://yq.aliyun.com/articles/107764)
2.2 MATLAB中的数组
2.3 曲线拟合
2.4 M文件
2.5 本章小结

相关文章
|
9天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
|
20天前
|
机器学习/深度学习 算法 JavaScript
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
|
1月前
|
机器学习/深度学习 数据安全/隐私保护
基于神经网络逆同步控制方法的两变频调速电机控制系统matlab仿真
本课题针对两电机变频调速系统,提出基于神经网络a阶逆系统的控制方法。通过构造原系统的逆模型,结合线性闭环调节器实现张力与速度的精确解耦控制,并在MATLAB2022a中完成仿真。该方法利用神经网络克服非线性系统的不确定性,适用于参数变化和负载扰动场景,提升同步控制精度与系统稳定性。核心内容涵盖系统原理、数学建模及神经网络逆同步控制策略,为工业自动化提供了一种高效解决方案。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
4月前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
256 80
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
2月前
|
数据可视化 数据挖掘 BI
MATLAB学习之旅:数据统计与分析
在MATLAB中,我们掌握了数据导入、处理及插值拟合等基础技能。接下来,我们将深入数据统计与分析领域,学习描述性统计量(如均值、标准差)、数据分布分析(如直方图、正态概率图)、数据排序与排名、数据匹配查找以及数据可视化(如箱线图、散点图)。这些工具帮助我们挖掘数据中的有价值信息,揭示数据的奥秘,为后续数据分析打下坚实基础。
|
2月前
|
数据建模 数据处理
MATLAB学习之旅:数据建模与仿真应用
在MATLAB的学习中,我们已掌握基础操作、数据处理与统计分析。接下来将进入数据建模与仿真应用阶段,学习如何构建和验证现实世界的模型。我们将从定义模型结构和参数入手,涵盖线性回归、动态系统建模等内容,并通过仿真和实际数据对比评估模型的准确性和可靠性。最终,这些技能将帮助我们在科学研究和工程应用中解决复杂问题。
|
3月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
242 10
|
4月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。

热门文章

最新文章