使用神经网络+遗传算法玩转Flappy Bird | 教程

简介:
本文来自AI新媒体量子位(QbitAI)


震惊!《Flappy Bird》火了这么多年,竟然没有中文名字。

没事。这不妨碍各路AI大触用这款游戏练手。比方说今天这个HTML5教程,就是教你使用神经网络+遗传算法,搭建一个玩转小鸟的AI。

提前说一下,教程最后有这个AI的代码下载。所有的代码都是使用Phaser框架使用HTML5完成的。另外,神经网络使用了突触神经网络(Synaptic Neural Network)库,而不是从零开始搭建。

Demo

上面是Demo演示的截图,访问下面这个网址,能够看到这套算法的实际效果。

http://www.askforgametask.com/html5/tutorials/flappy/

不方便观看上面在线Demo,或者没有耐心的同学,可以选择观看下面这个视频演示短片,中间有几倍速度的画面快进。


算法

这套系统的算法,主要是基于NeuroEvolution(神经进化)。这种机器学习方法,使用遗传算法(GA)等进化方法来训练人工神经网络(ANN)。

也就是说,这个例子中的机器学习=遗传算法+神经网络

人工神经网络

人工神经网络是机器学习算法的一个子集,它受到生物神经网络结构和功能的启发,这些网络是由很多彼此发送信号的神经元组成。

一个神经网络由输入层,一个或多个隐藏层,以及输出层组成。每层都有一些神经元,输入和输出层的神经元直接与外部环境相连。

在这个项目中,每个智能体(也就是小鸟)都有自己的神经网络作为闯关的AI大脑。这些大脑由三层组成,结构如下:

  1. 一个输入层,两个神经元,代表小鸟到豁口的水平距离和垂直距离
  2. 一个隐藏层,六个神经元
  3. 一个输出层,一个神经元,执行如下动作:如果输出>0.5就飞一下

上述文字,也可以用下面这张图表示:

遗传算法

我们在这里使用遗传算法,来训练和改进神经网络。

遗传算法顾名思义,是一种借鉴了自然选择和遗传过程的基于搜索的优化技术。这种算法使用相同的选择、组合交叉和变异的组合,来进行初始的随机演化。

以下是我们遗传算法实现的主要步骤:

  1. 使用随机神经网络创建10个初始的小鸟(种群)
  2. 让小鸟使用他们自己的神经网络,同时起飞玩游戏
  3. 对于每个小鸟,计算适应度函数来衡量飞行质量
  4. 当所有小鸟死亡时,使用遗传算子把当前种群评估到下一代
  5. 重复步骤2

适应度函数

对于上面的第3步,我们深入谈一下适应度函数的细节,以及如何定义。

由于我们想要使用最好的个体(小鸟)来进化种群,所以需要定义一个适应度函数。

一般来说,适应度函数用来衡量对象的质量。我们队每一只小鸟都进行测量,并从中选择合适的个体,用以生成下一代种群。

在这个项目中,我们按照小鸟的飞行距离给予奖励。另外,我们会根据小鸟和下一个豁口的距离给予惩罚。按照这种方式,就可以区别哪些飞行了同样距离的小鸟。

替代策略

对于上面第4步中遗传算法,下面是实现的步骤。基本上,最好的小鸟个体会生存下来,它们的后代会取代表现最差的那些。

  1. 现有种群的个体按照适应度进行排序
  2. 选择前四名给予奖励,直接把它们传给下一代种群
  3. 排名最高的两个个体,进行交叉组合,生成一个后代
  4. 前四名中随机选择两个个体,交叉组合产生三个后代
  5. 前四名中随机选择两个个体,生成两个直接复制的后代
  6. 对于每个后代,施加一些随机变异

代码

上述代码,可以访问如下地址获取:

https://github.com/ssusnic/Machine-Learning-Flappy-Bird

结论

在这个教程中,我们成功的让AI学会玩Flappy Bird这个游戏。在几次迭代之后,我们可以得到一个几乎无敌的小鸟。为了实现这一目标,我们采用了两种机器学习算法:人工神经网络+遗传算法。

如果你对这个项目感兴趣,未来可以尝试改变代码中的一些参数,看看会发生什么。例如,可以改变隐藏层中的神经元数量或者每一代种群的个体数量。当然还可以对适应度函数进行修改,比方加入障碍物之间的距离、重力等等因素。

以及,你可以尝试把类似的理念应用到其他游戏中去!

祝好运~

本文作者:问耕
原文发布时间:2017-08-21
相关文章
|
16天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
76 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
293 55
|
29天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
169 80
|
17天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
5天前
|
人工智能 算法 搜索推荐
算法备案全流程攻略:保姆级教程
在AI热潮下,算法成为互联网服务的核心驱动力,但也带来了大数据杀熟、算法歧视等问题。为规范行业发展,算法备案制度应运而生。该制度涵盖网站、APP等多种产品形式,要求企业在2个月内完成备案,依据《互联网信息服务算法推荐管理规定》等法规。未备案企业可能面临无法上线、罚款甚至刑罚的后果。备案流程包括注册、主体备案、信息填报及审核,确保算法合规运营。通过悬挂备案号、标识AI生成内容和定期自查,企业需持续维护算法安全与合规。
|
4天前
|
前端开发 小程序 Java
uniapp-网络数据请求全教程
这篇文档介绍了如何在uni-app项目中使用第三方包发起网络请求
16 3
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
195 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
17天前
|
存储 监控 算法
局域网网络管控里 Node.js 红黑树算法的绝妙运用
在数字化办公中,局域网网络管控至关重要。红黑树作为一种自平衡二叉搜索树,凭借其高效的数据管理和平衡机制,在局域网设备状态管理中大放异彩。通过Node.js实现红黑树算法,可快速插入、查找和更新设备信息(如IP地址、带宽等),确保网络管理员实时监控和优化网络资源,提升局域网的稳定性和安全性。未来,随着技术融合,红黑树将在网络管控中持续进化,助力构建高效、安全的局域网络生态。
40 9
|
23天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
25天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。