一、RNN
1.1 简介
循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)
对循环神经网络的研究始于二十世纪80-90年代,并在二十一世纪初发展为深度学习(deep learning)算法之一 [2] ,其中双向循环神经网络(Bidirectional RNN, Bi-RNN)和长短期记忆网络(Long Short-Term Memory networks,LSTM)是常见的循环神经网络 。
循环神经网络具有记忆性、参数共享并且图灵完备(Turing completeness),因此在对序列的非线性特征进行学习时具有一定优势 。循环神经网络在自然语言处理(Natural Language Processing, NLP),例如语音识别、语言建模、机器翻译等领域有应用,也被用于各类时间序列预报。引入了卷积神经网络(Convoutional Neural Network,CNN)构筑的循环神经网络可以处理包含序列输入的计算机视觉问题
1.2 序列数据
我们想象现在有一组序列数据 data 0,1,2,3. 在当预测 result0 的时候,我们基于的是 data0, 同样在预测其他数据的时候, 我们也都只单单基于单个的数据. 每次使用的神经网络都是同一个 NN. 不过这些数据是有关联 顺序的 , 就像在厨房做菜, 酱料 A要比酱料 B 早放, 不然就串味了. 所以普通的神经网络结构并不能让 NN 了解这些数据之间的关联.
1.3 处理序列数据的神经网络
那我们如何让数据间的关联也被 NN 加以分析呢? 想想我们人类是怎么分析各种事物的关联吧, 最基本的方式,就是记住之前发生的事情. 那我们让神经网络也具备这种记住之前发生的事的能力. 再分析 Data0 的时候, 我们把分析结果存入记忆. 然后当分析 data1的时候, NN会产生新的记忆, 但是新记忆和老记忆是没有联系的. 我们就简单的把老记忆调用过来, 一起分析. 如果继续分析更多的有序数据 , RNN就会把之前的记忆都累积起来, 一起分析.
我们再重复一遍刚才的流程, 不过这次是以加入一些数学方面的东西. 每次 RNN 运算完之后都会产生一个对于当前状态的描述 , state. 我们用简写 S( t) 代替, 然后这个 RNN开始分析 x(t+1) , 他会根据 x(t+1)产生s(t+1), 不过此时 y(t+1) 是由 s(t) 和 s(t+1) 共同创造的. 所以我们通常看到的 RNN 也可以表达成这种样子.
二、RNN实现手写数字图片分类
2.1 MNIST手写数据
import torch from torch import nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed(1) # reproducible # Hyper Parameters EPOCH = 1 # 训练整批数据多少次, 为了节约时间, 我们只训练一次 BATCH_SIZE = 64 TIME_STEP = 28 # rnn 时间步数 / 图片高度 INPUT_SIZE = 28 # rnn 每步输入值 / 图片每行像素 LR = 0.01 # learning rate DOWNLOAD_MNIST = False # 如果你已经下载好了mnist数据就写上 Fasle # Mnist 手写数字 train_data = dsets.MNIST( root='./mnist/', # 保存或者提取位置 train=True, # this is training data transform=transforms.ToTensor(), # 转换 PIL.Image or numpy.ndarray 成 # torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间 download=DOWNLOAD_MNIST, # 没下载就下载, 下载了就不用再下了 ) # 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28) train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) test_data = dsets.MNIST(root='./mnist/', train=False,transform=transforms.ToTensor()) # 为了节约时间, 我们测试时只测试前2000个 test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1) test_y = test_data.test_labels.numpy().squeeze()[:2000]
2.2 搭建RNN网络并训练
# 搭建RNN网络 class RNN(nn.Module): def __init__(self): super(RNN, self).__init__() self.rnn = nn.LSTM( # LSTM 效果要比 nn.RNN() 好多了 input_size=28, # 图片每行的数据28像素点 hidden_size=64, # rnn hidden unit num_layers=1, # 有几层 RNN layers batch_first=True, # input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size) ) self.out = nn.Linear(64, 10) # 输出层 def forward(self, x): # x shape (batch, time_step, input_size) # r_out shape (batch, time_step, output_size) # h_n shape (n_layers, batch, hidden_size) LSTM 有两个 hidden states, h_n 是分线, h_c 是主线 # h_c shape (n_layers, batch, hidden_size) r_out, (h_n, h_c) = self.rnn(x, None) # None 表示 hidden state 会用全0的 state # 选取最后一个时间点的 r_out 输出 # 这里 r_out[:, -1, :] 的值也是 h_n 的值 out = self.out(r_out[:, -1, :]) return out rnn = RNN() print(rnn) optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all parameters loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted # training and testing for epoch in range(EPOCH): for step, (x, b_y) in enumerate(train_loader): # gives batch data b_x = x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size) output = rnn(b_x) # rnn output loss = loss_func(output, b_y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients test_output = rnn(test_x[:10].view(-1, 28, 28)) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() print(pred_y, 'prediction number') print(test_y[:10], 'real number')
2.3 结果
三、RNN实现回归-Sin曲线预测Cos曲线
循环神经网络让神经网络有了记忆, 对于序列话的数据,循环神经网络能达到更好的效果.
3.1 数据
import torch from torch import nn import numpy as np import matplotlib.pyplot as plt torch.manual_seed(1) # reproducible # Hyper Parameters TIME_STEP = 10 # rnn time step / image height INPUT_SIZE = 1 # rnn input size / image width LR = 0.02 # learning rate DOWNLOAD_MNIST = False # set to True if haven't download the data # show data steps = np.linspace(0, np.pi*2, 100, dtype=np.float32) x_np = np.sin(steps) # float32 for converting torch FloatTensor y_np = np.cos(steps) plt.plot(steps, y_np,'r-',label= 'target (cos)') plt.plot(steps, x_np,'b-',label= 'input (sin)') plt.legend(loc= 'best') plt.show()
3.2 搭建RNN网络并训练
这一次的 RNN, 我们对每一个 r_out 都得放到 Linear 中去计算出预测的 output, 所以我们能用一个 for loop 来循环计算. 这点是 Tensorflow 望尘莫及的!
其实熟悉 RNN 的朋友应该知道, forward 过程中的对每个时间点求输出还有一招使得计算量比较小的. 不过上面的内容主要是为了呈现 PyTorch 在动态构图上的优势, 所以我用了一个 for loop 来搭建那套输出系统. 下面介绍一个替换方式. 使用 reshape 的方式整批计算.
class RNN(nn.Module): def __init__(self): super(RNN, self).__init__() self.rnn = nn.RNN( # 这回一个普通的 RNN 就能胜任 input_size=1, hidden_size=32, # rnn hidden unit num_layers=1, # 有几层 RNN layers batch_first=True, # input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size) ) self.out = nn.Linear(32, 1) def forward(self, x, h_state): # 因为 hidden state 是连续的, 所以我们要一直传递这一个 state # x (batch, time_step, input_size) # h_state (n_layers, batch, hidden_size) # r_out (batch, time_step, output_size) r_out, h_state = self.rnn(x, h_state) # h_state 也要作为 RNN 的一个输入 outs = [] # 保存所有时间点的预测值 for time_step in range(r_out.size(1)): # 对每一个时间点计算 output outs.append(self.out(r_out[:, time_step, :])) return torch.stack(outs, dim=1), h_state rnn = RNN() print(rnn) def forward(self, x, h_state): r_out, h_state = self.rnn(x, h_state) r_out = r_out.view(-1, 32) outs = self.out(r_out) return outs.view(-1, 32, TIME_STEP), h_state # 训练 optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all rnn parameters loss_func = nn.MSELoss() h_state = None # 要使用初始 hidden state, 可以设成 None for step in range(100): start, end = step * np.pi, (step+1)*np.pi # time steps # sin 预测 cos steps = np.linspace(start, end, 10, dtype=np.float32) x_np = np.sin(steps) # float32 for converting torch FloatTensor y_np = np.cos(steps) x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis]) # shape (batch, time_step, input_size) y = torch.from_numpy(y_np[np.newaxis, :, np.newaxis]) prediction, h_state = rnn(x, h_state) # rnn 对于每个 step 的 prediction, 还有最后一个 step 的 h_state # !! 下一步十分重要 !! h_state = h_state.data # 要把 h_state 重新包装一下才能放入下一个 iteration, 不然会报错 loss = loss_func(prediction, y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # backpropagation, compute gradients optimizer.step() # apply gradients # plotting plt.plot(steps, y_np.flatten(), 'r-') plt.plot(steps, prediction.data.numpy().flatten(), 'b-') plt.draw(); plt.pause(0.05) plt.ioff() plt.show()
3.3 结果