云原生|kubernetes|搭建部署一个稳定高效的EFK日志系统(一)

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 云原生|kubernetes|搭建部署一个稳定高效的EFK日志系统

前言


对于任何基础设施或后端服务系统,日志都是极其重要的。对于受Google内部容器管理系统Borg启发而催生出的Kubernetes项目来说,自然少不了对Logging的支持。

efk就是目前比较受欢迎的日志管理系统。kubernetes可以实现efk的快速部署和使用,通过statefulset控制器部署elasticsearch组件,用来存储日志数据,还可通过volumenclaimtemplate动态生成pv实现es数据的持久化。通过deployment部署kibana组件,实现日志的可视化管理。通过daemonset控制器部署fluentd组件,来收集各节点和k8s集群的日志。

实践流程


K8s中比较流行的日志收集解决方案是Elasticsearch、Fluentd和Kibana(EFK)技术栈,也是官方推荐的一种方案。

本次实践主要就是配置启动一个可扩展的 Elasticsearch 集群,然后在Kubernetes集群中创建一个Kibana应用,最后通过DaemonSet来运行Fluentd,以便它在每个Kubernetes工作节点上都可以运行一个 Pod,此pod挂载本地的docker日志目录到容器内部(k8s集群的日志都在这个目录下),fluentd将日志收集处理后推送到elasticsearch,kibana进行一个完整的展示。

EFK 利用部署在每个节点上的 Fluentd 采集 Kubernetes 节点服务器的 /var/log 和 /var/lib/docker/container 两个目录下的日志,然后传到 Elasticsearch 中。最后,用户通过访问 Kibana 来查询日志(如果docker没有使用默认的目录/var/lib/docker/container,请根据实际情况更改)。

具体过程如下:

  1. 创建 Fluentd 并且将 Kubernetes 节点服务器 log 目录挂载进容器。
  2. Fluentd 采集节点服务器 log 目录下的 containers 里面的日志文件。
  3. Fluentd 将收集的日志转换成 JSON 格式。
  4. Fluentd 利用 Exception Plugin 检测日志是否为容器抛出的异常日志,如果是就将异常栈的多行日志合并。
  5. Fluentd 将换行多行日志 JSON 合并。
  6. Fluentd 使用 Kubernetes Metadata Plugin 检测出 Kubernetes 的 Metadata 数据进行过滤,如 Namespace、Pod Name 等。
  7. Fluentd 使用 ElasticSearch Plugin 将整理完的 JSON 日志输出到 ElasticSearch 中。
  8. ElasticSearch 建立对应索引,持久化日志信息。
  1. Kibana 检索 ElasticSearch 中 Kubernetes 日志相关信息进行展示。

相关组件介绍:


  • Elasticsearch

Elasticsearch 是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大量日志数据,也可用于搜索许多不同类型的文档。

  • Kibana

Elasticsearch 通常与 Kibana 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 允许你通过 web 界面来浏览 Elasticsearch 日志数据。

  • Fluentd

Fluentd是一个流行的开源数据收集器,我们将在 Kubernetes 集群节点上安装 Fluentd,通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

正式的部署步骤:


一,关于volume存储插件的问题


由于elasticsearch这个组件是计划部署为一个可扩展的集群,因此,使用了volumenclaimtemplate模板动态生成pv,而volumenclaimtemplate必须要有一个可用的StorageClass,因此,部署一个nfs-client-provisioner插件,然后借由此插件实现一个可用的StorageClass。因前面写过关于此类部署的文章,就不在此重复了,以免本文篇幅过长,下面是部署方案:

kubernetes学习之持久化存储StorageClass(4)_晚风_END的博客-CSDN博客_kubernetes中用于持久化存储的组件

二,关于kubernetes内部使用的DNS---COREDNS的功能


云原生|kubernetes|kubernetes-1.18 二进制安装教程单master(其它的版本也基本一样)_晚风_END的博客-CSDN博客_二进制安装kubelet 这个里面关于coredns做了一个比较详细的介绍,不太会的可以看这里部署coredns,以保证es集群的成功部署。

测试coredns的功能是否正常:

kubectl run -it --image busybox:1.28.3 -n web  dns-test --restart=Never --rm

测试了解析域名 kubernetes,kubernetes-default,baidu.com ,elasticsearch.kube-logging.svc.cluster.local 这么几个域名(elasticsearch-cluster我已经部署好才测试成功了elasticsearch.kube-logging.svc.cluster.local 这个域名啦),并查看了容器内的dns相关文件。

总之,一句话,要保证coredns是可用的,正常的,否则es集群是部署不好的哦。

DNS测试用例:

/ # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
/ # nslookup kubernetes.default
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      kubernetes.default
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
/ # nslookup baidu.com
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      baidu.com
Address 1: 110.242.68.66
Address 2: 39.156.66.10
/ # nslookup elasticsearch.kube-logging.svc.cluster.local
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      elasticsearch.kube-logging.svc.cluster.local
Address 1: 10.244.1.20 es-cluster-1.elasticsearch.kube-logging.svc.cluster.local
Address 2: 10.244.1.21 es-cluster-0.elasticsearch.kube-logging.svc.cluster.local
Address 3: 10.244.2.20 es-cluster-2.elasticsearch.kube-logging.svc.cluster.local
/ # cat /etc/resolv.conf 
nameserver 10.0.0.2
search web.svc.cluster.local svc.cluster.local cluster.local localdomain default.svc.cluster.local
options ndots:5

三,es集群的部署


建立相关的namespace:

cat << EOF > es-ns.yaml
apiVersion: v1
kind: Namespace
metadata:
  name: kube-logging
EOF

headless service

es-svc.yaml里的headless service:


使用无头service的原因是,headless service不具备负载均衡也没有IP,而headless service可以提供一个稳定的域名elasticsearch.kube-logging.svc.cluster.local(service的名字是elasticsearch嘛),而es的部署方式是StateFulSet,是有三个pod的,也就是DNS的测试内容


在kube-logging名称空间定义了一个名为 elasticsearch 的 Service服务,带有app=elasticsearch标签,当我们将 ElasticsearchStatefulSet 与此服务关联时,服务将返回带有标签app=elasticsearch的 Elasticsearch Pods的DNS A记录。最后,我们分别定义端口9200、9300,分别用于与 REST API 交互,以及用于节点间通信(9300是节点之间es集群选举通信用的)

DNS测试用例:

/ # nslookup elasticsearch.kube-logging.svc.cluster.local
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local
Name:      elasticsearch.kube-logging.svc.cluster.local
Address 1: 10.244.1.20 es-cluster-1.elasticsearch.kube-logging.svc.cluster.local
Address 2: 10.244.1.21 es-cluster-0.elasticsearch.kube-logging.svc.cluster.local
Address 3: 10.244.2.20 es-cluster-2.elasticsearch.kube-logging.svc.cluster.local

es-svc.yaml 集群的service部署清单:  

cat << EOF >es-svc.yaml
kind: Service
apiVersion: v1
metadata:
  name: elasticsearch
  namespace: kube-logging
  labels:
    app: elasticsearch
spec:
  selector:
    app: elasticsearch
  clusterIP: None
  ports:
    - port: 9200
      name: rest
    - port: 9300
      name: inter-node
EOF

es-sts-deploy.yaml 部署清单详解

【整体关键字段介绍】:

在kube-logging的名称空间中定义了一个es-cluster的StatefulSet。容器的名字是elasticsearch,镜像是elasticsearch:7.8.0。使用resources字段来指定容器需要保证至少有0.1个vCPU,并且容器最多可以使用1个vCPU(这在执行初始的大量提取或处理负载高峰时限制了Pod的资源使用)。了解有关资源请求和限制,可参考https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/。暴漏了9200和9300两个端口,名称要和上面定义的 Service 保持一致,通过volumeMount声明了数据持久化目录,定义了一个data数据卷,通过volumeMount把它挂载到容器里的/usr/share/elasticsearch/data目录。我们将在以后的YAML块中为此StatefulSet定义VolumeClaims。

然后,我们使用serviceName 字段与我们之前创建的ElasticSearch服务相关联。这样可以确保可以使用以下DNS地址访问StatefulSet中的每个Pod:,es-cluster-[0,1,2].elasticsearch.kube-logging.svc.cluster.local,其中[0,1,2]与Pod分配的序号数相对应。我们指定3个replicas(3个Pod副本),将matchLabels selector 设置为app: elasticseach,然后在该.spec.template.metadata中指定pod需要的镜像。该.spec.selector.matchLabels和.spec.template.metadata.labels字段必须匹配。

【部分关键变量介绍】:

a,cluster.name

Elasticsearch     集群的名称,我们这里是 k8s-logs,此变量非常重要。

b,node.name

节点的名称,通过metadata.name来获取。这将解析为 es-cluster-[0,1,2],取决于节点的指定顺序。

c,discovery.zen.ping.unicast.hosts

此字段用于设置在Elasticsearch集群中节点相互连接的发现方法。

我们使用 unicastdiscovery方式,它为我们的集群指定了一个静态主机列表。

由于我们之前配置的无头服务,我们的 Pod 具有唯一的DNS域es-cluster-[0,1,2].elasticsearch.logging.svc.cluster.local,

因此我们相应地设置此变量。由于都在同一个 namespace 下面,所以我们可以将其缩短为es-cluster-[0,1,2]

d,discovery.zen.minimum_master_nodes

我们将其设置为(N/2) + 1,N是我们的群集中符合主节点的节点的数量。

我们有3个Elasticsearch 节点,因此我们将此值设置为2(向下舍入到最接近的整数)。

e,ES_JAVA_OPTS

这里我们设置为-Xms512m -Xmx512m,告诉JVM使用512MB的最小和最大堆。

你应该根据群集的资源可用性和需求调整这些参数。

f,

initcontainer内容

. . .

 

initContainers:
      - name: fix-permissions
        image: busybox
        command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]
        securityContext:
          privileged: true
        volumeMounts:
        - name: data
          mountPath: /usr/share/elasticsearch/data
      - name: increase-vm-max-map
        image: busybox
        command: ["sysctl", "-w", "vm.max_map_count=262144"]
        securityContext:
          privileged: true
      - name: increase-fd-ulimit
        image: busybox
        command: ["sh", "-c", "ulimit -n 65536"]
        securityContext:
          privileged: true

这里我们定义了几个在主应用程序之前运行的Init 容器,这些初始容器按照定义的顺序依次执行,执行完成后才会启动主应用容器。第一个名为 fix-permissions 的容器用来运行 chown 命令,将 Elasticsearch 数据目录的用户和组更改为1000:1000(Elasticsearch 用户的 UID)。因为默认情况下,Kubernetes 用 root 用户挂载数据目录,这会使得 Elasticsearch 无法方法该数据目录,可以参考 Elasticsearch 生产中的一些默认注意事项相关文档说明:https://www.elastic.co/guide/en/elasticsearch/reference/current/docker.html#_notes_for_production_use_and_defaults

第二个名为increase-vm-max-map 的容器用来增加操作系统对mmap计数的限制,默认情况下该值可能太低,导致内存不足的错误,要了解更多关于该设置的信息,可以查看 Elasticsearch 官方文档说明:https://www.elastic.co/guide/en/elasticsearch/reference/current/vm-max-map-count.html。最后一个初始化容器是用来执行ulimit命令增加打开文件描述符的最大数量的。

g,

在 StatefulSet 中,使用volumeClaimTemplates来定义volume 模板即可:

. . .

volumeClaimTemplates:
  - metadata:
      name: data
      labels:
        app: elasticsearch
    spec:
      accessModes: [ "ReadWriteOnce" ]
      storageClassName: managed-nfs-storage
      resources:
        requests:
          storage: 10Gi

我们这里使用 volumeClaimTemplates 来定义持久化模板,Kubernetes 会使用它为 Pod 创建 PersistentVolume,设置访问模式为ReadWriteOnce,这意味着它只能被 mount到单个节点上进行读写,然后最重要的是使用了一个名为do-block-storage的 StorageClass 对象,所以我们需要提前创建该对象,我们这里使用的 NFS 作为存储后端,所以需要安装一个对应的 nfs-client-provisioner驱动。


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
1月前
|
Kubernetes 监控 Cloud Native
云原生时代下的应用开发与部署实践
【10月更文挑战第4天】在云原生的浪潮中,开发者和运维人员面临着新的挑战和机遇。本文将通过实际案例,展示如何在云平台上高效地开发、部署和管理应用,同时确保系统的可扩展性和高可用性。我们将深入探讨容器化技术、微服务架构以及持续集成/持续部署(CI/CD)流程的实施策略,旨在为读者提供一套完整的云原生解决方案框架。
|
1月前
|
Kubernetes 持续交付 Docker
利用 Docker 和 Kubernetes 实现微服务部署
【10月更文挑战第2天】利用 Docker 和 Kubernetes 实现微服务部署
|
1月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
120 60
|
1月前
|
Prometheus Kubernetes 监控
k8s部署针对外部服务器的prometheus服务
通过上述步骤,您不仅成功地在Kubernetes集群内部署了Prometheus,还实现了对集群外服务器的有效监控。理解并实施网络配置是关键,确保监控数据的准确无误传输。随着监控需求的增长,您还可以进一步探索Prometheus生态中的其他组件,如Alertmanager、Grafana等,以构建完整的监控与报警体系。
204 62
|
16天前
|
监控 Cloud Native 持续交付
云原生技术深度解析:重塑现代应用开发与部署范式####
本文深入探讨了云原生技术的核心概念、关键技术组件及其在现代软件开发中的重要性。通过剖析容器化、微服务架构、持续集成/持续部署(CI/CD)等关键技术,本文旨在揭示云原生技术如何促进应用的敏捷性、可扩展性和高可用性,进而推动企业数字化转型进程。不同于传统摘要仅概述内容要点,本部分将融入具体案例分析,直观展示云原生技术在实际应用中的显著成效与挑战应对策略,为读者提供更加丰富、立体的理解视角。 ####
|
27天前
|
Kubernetes Cloud Native 持续交付
云原生技术:重塑现代应用开发与部署模式####
本文深入探讨了云原生技术的核心概念、发展历程及其在现代软件开发和部署中的关键作用。通过分析云原生架构的特点,如容器化、微服务、持续集成与持续部署(CI/CD),以及它如何促进应用的可伸缩性、灵活性和效率,本文旨在为读者提供一个关于云原生技术全面而深入的理解。此外,还将探讨实施云原生策略时面临的挑战及应对策略,帮助组织更好地把握数字化转型的机遇。 ####
|
10天前
|
监控 Cloud Native 微服务
云端漫步:探索云原生应用的构建与部署
【10月更文挑战第32天】在数字时代的浪潮中,云原生技术如同一艘航船,承载着企业的梦想驶向未知的海洋。本文将带你领略云原生应用的魅力,从基础概念到实战操作,我们将一步步揭开云原生的神秘面纱,体验它如何简化开发、加速部署,并提升系统的可扩展性与可靠性。让我们一起启航,探索云原生的世界!
|
1月前
|
Cloud Native 持续交付 云计算
云端新纪元:探索云原生技术的奥秘在当今数字化时代,云计算已成为推动企业创新和增长的关键动力。随着云平台的不断成熟,云原生技术应运而生,以其独特的优势引领着一场新的技术革命。本文将深入探讨云原生的核心概念、主要特点以及它如何改变现代软件开发和部署的方式,为您揭开云原生这一神秘面纱。
云原生是一种构建和运行应用程序的方法,充分利用了云平台的弹性、分布式本质以及声明式基础设施。本文将解析云原生的十二要素,微服务架构的优势,以及容器化、持续集成与持续部署(CI/CD)等核心技术的实践应用。通过深入浅出的方式,让读者理解云原生不仅是一种技术,更是一种文化和方法论,它正在重塑软件开发流程,提高资源利用率和应用系统的可扩展性与容错性。
|
1月前
|
Kubernetes Docker 微服务
微服务实践k8s&dapr开发部署实验(1)服务调用(一)
微服务实践k8s&dapr开发部署实验(1)服务调用(一)
49 2
|
1月前
|
Kubernetes 网络安全 容器
基于Ubuntu-22.04安装K8s-v1.28.2实验(一)部署K8s
基于Ubuntu-22.04安装K8s-v1.28.2实验(一)部署K8s
197 2