python神经网络之实现双层感知器和神经网络感知器算法将鸢尾分类

简介: python神经网络之实现双层感知器和神经网络感知器算法将鸢尾分类

1.问题描述:实现一个简单的只有输入层和输出层的前馈神经网络,输入数据与输出数据有下面的对应关系


[0,0,1]->0


[0,1,1]->1


[1,0,1]->0


[1,1,1]->1


从数据可以看出 输入层只有三个神经元 输出层只有一个神经元


由下图可以看出 随着训练次数的增加 误差在逐渐减小并收敛

1666431460191.jpg

代码如下

import  numpy as np
def sigmoid(x):
    return (1/(1+np.exp(-x)))
def dsigmoid(y):
    return  y*(1-y)
x=np.array([[0,0,1],
           [0,1,1],
           [1,0,1],
           [1,1,1]])
y=np.array([0,1,0,1]).T
w0=np.random.random((3,4))
print(w0)
b0=0.5
lrate=0.3
for epochs in range(20):
    inx=x
    outy=sigmoid(np.dot(inx,w0)+b0)
    w0+=lrate*np.dot(inx.T,2*(y-outy)*dsigmoid(outy))
    b0+=lrate*2*(y-outy)*dsigmoid(outy)
    err=(y-outy)*(y-outy)
    print("epochs=",epochs+1,"error is",err.T)


2:使用神经网络感知器算法进行鸢尾花分类


问题描述:定义一个神经网络算法 对鸢尾花进行分类,使用iris数据集中的花瓣长度和花萼长度两个特征


要求:构造神经网络类,学习率为0.2,初始权重和截距为0,利用误差反向传播算法,对权重和截距进行更新


可视化和结果如下

1666431526076.jpg

1666431537934.jpg


输出结果显示 算法迭代四次以后,得到一个比较稳定的权重参数[1.4,-3.68]这个权重参数保持不变一直到第十次迭代  同样大家可以修改学习率和迭代次数来观察结果变化


代码如下

import  numpy as np
import  pandas as pd
import  matplotlib.pyplot as plt
class ANNnet(object):
    def __init__(self,lrate=0.2,epochs=10):
        self.lrate=lrate
        self.epochs=epochs
    def train(self,x,y):
        self.weight=np.zeros(x.shape[1])
        print('initial weight',self.weight)
        self.b=0
        for i in range(self.epochs):
            for x,y in zip(x,y):
                delta=self.lrate*(y-self.predict(x))
                self.weight[:]+=delta*x
                self.b+=delta
            print('weight after',i+1,'epochs',self.weight)
    def net_input(self,x):
        return x
    def predict(self,x):
        y=np.dot(x,self.weight[:])+self.b
        return  np.where(y>=0,1,-1)
print('step1 加载数据')
df=pd.read_csv(r'iris.csv',header=None)
print('step 2 可视化')
y=df.loc[0:,4].values
y=np.where(y=='setosa',1,-1)
x=df.iloc[0:,[0,2]].values
plt.scatter(x[:50,0],x[:50,1],color="red",marker='o',label='Setosa')
plt.scatter(x[50:,0],x[50:,1],color="blue",marker='o',label='Vresicolor or Virginica')
plt.xlabel("petal length")
plt.ylabel("sepal length")
plt.legend(loc='upper left')
plt.show()
print('step3 构建神经网络')
pr=ANNnet()
print('step4:fitting')
pr.train(x,y)
print('step5 predicting')
print('iris1 result',pr.predict([5.1,1.4]))
print('iris2 result',pr.predict([7,4.7]))
print('iris3 result',pr.predict([5.9,5.1]))
目录
打赏
0
0
0
0
146
分享
相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
49 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
87 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
|
27天前
|
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
44 10
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
126 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
110 16
YOLOv11改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
59 11
RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等