通过Logstash实现mysql数据定时增量同步到ES

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 通过Logstash实现mysql数据定时增量同步到ES

前言


很多时候,在项目初期都是仅采用mysql数据库作为业务数据库,但是随着数据的增长,当单表的数据超过千万级后,在怎么对查询SQL语句进行优化性能都不理想。这种情况下,我们就可以考虑通过ES来实现项目的读写分离:写操作对Mysql库进行操作,读操作采用ES。那么我们应该如何保证ES和Mysql的数据同步呢?本文给大家介绍通过Logstash实现mysql数据定时增量同步到ES。


一、系统配置


在本篇文章中,我使用下列产品进行测试:


MySQL:8.0.16

Elasticsearch:7.1.1

Logstash:7.1.1

Java:1.8.0_162-b12

JDBC 输入插件:v4.3.13

JDBC 连接器:Connector/J 8.0.16

关于MySQL、Elasticsearch、Logstash的安装过程这里就不作赘述。


二、同步步骤整体概览


在本篇博文中,我们使用 Logstash 和 JDBC 输入插件来让 Elasticsearch 与 MySQL 保持同步。从概念上讲,Logstash 的 JDBC 输入插件会运行一个循环来定期对 MySQL 进行轮询,从而找出在此次循环的上次迭代后插入或更改的记录。如要让其正确运行,必须满足下列条件:


ES和Mysql表的id字段对应关系

在将 MySQL 中的文档写入 Elasticsearch 时,Elasticsearch 中的 “_id” 字段必须设置为 MySQL 中的 “id” 字段。这可在 MySQL 记录与 Elasticsearch 文档之间建立一个直接映射关系。如果在 MySQL 中更新了某条记录,那么将会在 Elasticsearch 中覆盖整条相关记录。请注意,在 Elasticsearch 中覆盖文档的效率与更新操作的效率一样高,因为从内部原理上来讲,更新便包括删除旧文档以及随后对全新文档进行索引。

因为是根据时间实现增量同步,所以mysql表中必须有一个包含更新或插入时间的字段

当在 MySQL 中插入或更新数据时,该条记录必须有一个包含更新或插入时间的字段。通过此字段,便可允许 Logstash 仅请求获得在轮询循环的上次迭代后编辑或插入的文档。Logstash 每次对 MySQL 进行轮询时,都会保存其从 MySQL 所读取最后一条记录的更新或插入时间。在下一次迭代时,Logstash 便知道其仅需请求获得符合下列条件的记录:更新或插入时间晚于在轮询循环中的上一次迭代中所收到的最后一条记录。

如果满足上述条件,我们便可配置 Logstash,以定期请求从 MySQL 获得新增或已编辑的全部记录,然后将它们写入 Elasticsearch 中。完成这些操作的 Logstash 代码在本篇博文的后面会列出。


整个同步演示步骤如下:


在Mysql中新建表

在ES中建立索引

logstash进行管道配置

验证数据同步


三.logstash数据同步实战


1、新建mysql表

可以使用下列代码配置 MySQL 数据库和数据表:

CREATE DATABASE es_db;
USE es_db;
DROP TABLE IF EXISTS es_table;
CREATE TABLE es_table (
  id BIGINT(20) UNSIGNED NOT NULL,
  client_name VARCHAR(32) NOT NULL,
  modification_time TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  insertion_time TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
  PRIMARY KEY (id),
  UNIQUE KEY unique_id (id)
);


在上面的 MySQL 配置中,有几个参数需要特别注意:


es_table:这是 MySQL 数据表的名称,数据会从这里读取出来并同步到 Elasticsearch。

id:这是该条记录的唯一标识符。请注意 “id” 已被定义为 PRIMARY KEY(主键)和 UNIQUE KEY(唯一键)。这能确保每个 “id” 仅在当前表格中出现一次。其将会转换为 “_id”,以用于更新 Elasticsearch 中的文档及向 Elasticsearch 中插入文档。

client_name:此字段表示在每条记录中所存储的用户定义数据。在本篇博文中,为简单起见,我们只有一个包含用户定义数据的字段,但您可以轻松添加更多字段。我们要更改的就是这个字段,从而向大家演示不仅新插入的 MySQL 记录被复制到了 Elasticsearch 中,而且更新的记录也被正确传播到了 Elasticsearch 中。

modification_time:在 MySQL 中插入或更改任何记录时,都会将这个所定义字段的值设置为编辑时间。有了这个编辑时间,我们便能提取自从上次 Logstash 请求从 MySQL 获取记录后被编辑的任何记录。

insertion_time:此字段主要用于演示目的,并非正确进行同步需满足的严格必要条件。我们用其来跟踪记录最初插入到 MySQL 中的时间。

完成上述配置后,可以通过下列语句向 MySQL 中写入记录:


INSERT INTO es_table (id, client_name) VALUES (<id>, <client name>);


可以通过下列命令更新 MySQL 中的记录:


UPDATE es_table SET client_name = <new client name> WHERE id=<id>;


2、ES中新建索引

在ES中新建索引rdbms_sync_idx

PUT rdbms_sync_idx
{
    "settings": {
        "index": {
            "refresh_interval": "5s"
        }
    },
    "mappings": {
        "_default_": {
            "properties": {
                "@timestamp": {
                    "type": "date"
                },
                "insertion_time": {
                    "type": "date"
                },
                "modification_time": {
                    "type": "date"
                },
                "client_name": {
                    "type": "keyword"
                }
            }
        }
    }
}


3、Logstash 管道配置

新建logstash-7.1.1/sync/logstash-db-sync.conf配置文件:

#logstash输入配置
input {
  #jdbc输入配置,用来指定mysql中需要同步的数据查询SQL及同步周期
  jdbc {
    jdbc_driver_library => "<path>/mysql-connector-java-8.0.16.jar"
    jdbc_driver_class => "com.mysql.jdbc.Driver"
    jdbc_connection_string => "jdbc:mysql://<MySQL host>:3306/es_db"
    jdbc_user => <my username>
    jdbc_password => <my password>
    # 是否开启分页
    jdbc_paging_enabled => true
     # 是否开启记录上次追踪的结果,也就是上次更新的时间,这个会记录到 last_run_metadata_path 的文件
    use_column_value => true
    # 用来控制增量更新的字段,一般是自增id或者创建、更新时间,注意这里要采用sql语句中select采用的字段别名
    tracking_column => "unix_ts_in_secs"
    # tracking_column 对应字段的类型
    tracking_column_type => "numeric"
    # 设置定时任务间隔  含义:分、时、天、月、年,全部为*默认含义为每分钟跑一次任务,这里设置为每5分钟同步一次
    schedule => "*/5 * * * * *"
     # 同步数据的查询sql语句
    statement => "SELECT *, UNIX_TIMESTAMP(modification_time) AS unix_ts_in_secs FROM es_table WHERE (UNIX_TIMESTAMP(modification_time) > :sql_last_value AND modification_time < NOW()) ORDER BY modification_time ASC"
  }
}
#logstash输入数据的字段匹配和数据过滤
filter {
  mutate {
    copy => { "id" => "[@metadata][_id]"}
    remove_field => ["id", "@version", "unix_ts_in_secs"]
  }
}
#logstash输出配置
output {
  # 采用stdout可以将同步数据输出到控制台,主要是调试阶段使用
  stdout { codec =>  "rubydebug"}
  # 指定输出到ES的具体索引
  elasticsearch {
      index => "rdbms_sync_idx"
      document_id => "%{[@metadata][_id]}"
  }
}


在上述管道中,应该重点强调几个区域:


tracking_column:此字段会指定 “unix_ts_in_secs” 字段(用于跟踪 Logstash 从 MySQL 读取的最后一个文档,下面会进行描述),其存储在 .logstash_jdbc_last_run 中的磁盘上。该值将会用来确定 Logstash 在其轮询循环的下一次迭代中所请求文档的起始值。在 .logstash_jdbc_last_run 中所存储的值可以作为 “:sql_last_value” 通过 SELECT 语句进行访问。

unix_ts_in_secs:这是一个由上述 SELECT 语句生成的字段,包含可作为标准 Unix 时间戳(自 Epoch 起秒数)的 “modification_time”。我们刚讨论的 “tracking column” 会引用该字段。Unix 时间戳用于跟踪进度,而非作为简单的时间戳;如将其作为简单时间戳,可能会导致错误,因为在 UMT 和本地时区之间正确地来回转换是一个十分复杂的过程。

sql_last_value:这是一个内置参数,包括 Logstash 轮询循环中当前迭代的起始点,上面 JDBC 输入配置中的 SELECT 语句便会引用这一参数。该字段会设置为 “unix_ts_in_secs”(读取自 .logstash_jdbc_last_run)的最新值。在 Logstash 轮询循环内所执行的 MySQL 查询中,其会用作所返回文档的起点。通过在查询中加入这一变量,能够确保不会将之前传播到 Elasticsearch 的插入或更新内容重新发送到 Elasticsearch。

schedule:其会使用 cron 语法来指定 Logstash 应当以什么频率对 MySQL 进行轮询以查找变更。这里所指定的 “*/5 * * * * *” 会告诉 Logstash 每 5 秒钟联系一次 MySQL。

modification_time < NOW():SELECT 中的这一部分是一个较难解释的概念,我们会在下一部分详加解释。

filter:在这一部分,我们只需简单地将 MySQL 记录中的 “id” 值复制到名为 “_id” 的元数据字段,因为我们之后输出时会引用这一字段,以确保写入 Elasticsearch 的每个文档都有正确的 “_id” 值。通过使用元数据字段,可以确保这一临时值不会导致创建新的字段。我们还从文档中删除了 “id”、“@version” 和 “unix_ts_in_secs” 字段,因为我们不希望将这些字段写入到 Elasticsearch 中。

output:在这一部分,我们指定每个文档都应当写入 Elasticsearch,还需为其分配一个 “_id”(需从我们在筛选部分所创建的元数据字段提取出来)。还会有一个包含被注释掉代码的 rubydebug 输出,启用此输出后能够帮助您进行故障排查。


4、启动Logstash

./logstash -f /usr/local/logstash-7.1.1/sync/logstash-db-sync.conf


后台启动为:


nohup ./logstash -f /usr/local/logstash-7.1.1/sync/logstash-db-sync.conf &


5、测试

可以通过一些简单测试来展示我们的实施方案能够实现预期效果。我们可以使用下列命令向 MySQL 中写入记录:

INSERT INTO es_table (id, client_name) VALUES (1, 'Jim Carrey');
INSERT INTO es_table (id, client_name) VALUES (2, 'Mike Myers');
INSERT INTO es_table (id, client_name) VALUES (3, 'Bryan Adams');


JDBC 输入计划触发了从 MySQL 读取记录的操作并将记录写入 Elasticsearch 后,我们即可运行下列 Elasticsearch 查询来查看 Elasticsearch 中的文档:

GET rdbms_sync_idx/_search


其会返回类似下面回复的内容:

"hits" : {
    "total" : {
      "value" :3,
      "relation" : "eq"
    },
    "max_score" :1.0,
    "hits" : [
      {
        "_index" : "rdbms_sync_idx",
        "_type" : "_doc",
        "_id" :"1",
        "_score" :1.0,
        "_source" : {
          "insertion_time" :"2019-06-18T12:58:56.000Z",
          "@timestamp" :"2019-06-18T13:04:27.436Z",
          "modification_time" :"2019-06-18T12:58:56.000Z",
          "client_name" :"Jim Carrey"
        }
      },
Etc …


然后我们可以使用下列命令更新在 MySQL 中对应至 _id=1 的文档:

UPDATE es_table SET client_name = 'Jimbo Kerry' WHERE id=1;


其会正确更新 _id 被识别为 1 的文档。我们可以通过运行下列命令直接查看 Elasticsearch 中的文档:


GET rdbms_sync_idx/_doc/1


其会返回一个类似下面的文档:


{
  "_index" : "rdbms_sync_idx",
  "_type" : "_doc",
  "_id" :"1",
  "_version" :2,
  "_seq_no" :3,
  "_primary_term" :1,
  "found" : true,
  "_source" : {
    "insertion_time" :"2019-06-18T12:58:56.000Z",
    "@timestamp" :"2019-06-18T13:09:30.300Z",
    "modification_time" :"2019-06-18T13:09:28.000Z",
    "client_name" :"Jimbo Kerry"
  }
}


请注意 _version 现已设置为 2,modification_time 现在已不同于 insertion_time,并且 client_name 字段已正确更新至新值。在本例中,@timestamp 字段的用处并不大,由 Logstash 默认添加。


6、删除数据

按照目前的配置,如果从 MySQL 中删除一个文档,那么这一删除操作并不会传播到 Elasticsearch。


可以考虑通过下列方法来解决这一问题:我们可以通过软删除实现mysql数据删除操作的同步。


MySQL 记录可以包含一个 “is_deleted” 字段,用来显示该条记录是否仍有效。这一方法被称为“软删除”。正如对 MySQL 中的记录进行其他更新一样,“is_deleted” 字段将会通过 Logstash 传播至 Elasticsearch。如果实施这一方法,则需要编写 Elasticsearch 和 MySQL 查询,从而将 “is_deleted” 为 “true”(正)的记录/文档排除在外。 最后,可以通过后台作业来从 MySQL 和 Elastic 中移除此类文档。


另一种方法是确保负责从 MySQL 中删除记录的任何系统随后也会执行一条命令,从而直接从 Elasticsearch 中删除相应文档。


四.SELECT 语句正确性分析


注意:

增量同步的SQL语句对于增量数据的查询,如果是通过更新时间来查询增量数据,不能简单的通过i.updated_time >= :sql_last_value来控制,会出现临界值的问题.


在这一部分,我们会详加解释为什么在 SELECT 语句中添加 modification_time < NOW() 至关重要。为帮助解释这一概念,我们首先给出几个反面例子,向您演示为什么两种最直观的方法行不通。然后会解释为什么添加 modification_time < NOW() 能够克服那两种直观方法所导致的问题。


情况一:大于sql_last_value

如果仅仅采用


UNIX_TIMESTAMP

(modification_time) > :sql_last_value 的话,会发生什么情况。在这种情况下,SELECT 语句如下:

statement => "SELECT *, UNIX_TIMESTAMP(modification_time) AS unix_ts_in_secs FROM es_table 
WHERE (UNIX_TIMESTAMP(modification_time) > :sql_last_value) ORDER BY modification_time ASC"


乍看起来,上面的方法好像应可以正常运行,但是对于一些边缘情况,其可能会错过一些文档。举例说明,我们假设 MySQL 现在每秒插入两个文档,Logstash 每 5 秒执行一次 SELECT 语句。具体如下图所示,T0 到 T10 分别代表每一秒,MySQL 中的数据则以 R1 到 R22 表示。我们假定 Logstash 轮询循环的第一个迭代发生在 T5,其会读取文档 R1 到 R11,如蓝绿色的方框所示。在 sql_last_value 中存储的值现在是 T5,因为这是所读取最后一条记录 (R11) 的时间戳。我们还假设在 Logstash 从 MySQL 读取完文件后,另一个时间戳为 T5 的文档 R12 立即插入到了 MySQL 中。

113.png

图表显示读取记录时会错开一条

在上述 SELECT 语句的下一个迭代中,我们仅会提取时间晚于 T5 的文档(因为 WHERE (UNIX_TIMESTAMP(modification_time) > :sql_last_value) 就是如此规定的),这也就意味着将会跳过记录 R12。您可以参看下面的图表,其中蓝绿色方框表示 Logstash 在当前迭代中读取的记录,灰色方框表示 Logstash 之前读取的记录。

112.png


简单来说:

在T5时刻执行sql查询时,这一时刻同时插入了多条数据R11,R12等,但是由于并发或者其他网络延迟问题,只读取到了R11这条数据,这样就导致了R12数据不会被同步到ES中。


结论:

通过(modification_time) > :sql_last_value(modification_time) > sql_last_value查询增量数据,如果在执行同步的时刻发生大量的并发写入,很容易出现数据丢失的情况


情况二:大于等于sql_last_value

为了解决上面的问题,您可能决定更改 WHERE 子句为 greater than or equals(晚于或等于),具体如下:


statement => "SELECT *, UNIX_TIMESTAMP(modification_time) AS unix_ts_in_secs FROM es_table 
WHERE (UNIX_TIMESTAMP(modification_time) >= :sql_last_value) ORDER BY modification_time ASC"


然而,这种实施策略也并不理想。这种情况下的问题是:在最近一个时间间隔内从 MySQL 读取的最近文档会重复发送到 Elasticsearch。尽管这不会对结果的正确性造成任何影响,但的确做了无用功。和前一部分类似,在最初的 Logstash 轮询迭代后,下图显示了已经从 MySQL 读取了哪些文档。

111.png

当执行后续的 Logstash 轮询迭代时,我们会将时间晚于或等于 T5 的文档全部提取出来。可以参见下面的图表。请注意:记录 11(紫色显示)会再次发送到 Elasticsearch。

110.png

前面两种情况都不甚理想。在第一种情况中,会丢失数据,而在第二种情况中,会从 MySQL 读取冗余数据并将这些数据发送到 Elasticsearch。


结论:

如果通过(modification_time) >= :sql_last_value查询增量数据,mysql在查询的时候发生大量的并发写入,会从 MySQL 读取冗余数据并将这些数据发送到 Elasticsearch


情况三:modification_time大于sql_last_value并且小于NOW()

由于执行statement 查询增量的时刻,mysql可能还在继续写入数据,所以针对NOW()时刻获取的数据是不准确的,需要过滤。


鉴于前面两种情况都不太理想,应该采用另一种办法。通过指定 (UNIX_TIMESTAMP(modification_time) > :sql_last_value AND modification_time < NOW()),我们会将每个文档都发送到 Elasticsearch,而且只发送一次。


请参见下面的图表,其中当前的 Logstash 轮询会在 T5 执行。请注意,由于必须满足 modification_time < NOW(),所以只会从 MySQL 中读取截至(但不包括)时间段 T5 的文档。由于我们已经提取了 T4 的全部文档,而未读取 T5 的任何文档,所以我们知道对于下一次的Logstash 轮询迭代,sql_last_value 将会被设置为 T4。

109.png

下图演示了在 Logstash 轮询的下一次迭代中将会发生什么情况。由于 UNIX_TIMESTAMP(modification_time) > :sql_last_value,并且 sql_last_value 设置为 T4,我们知道仅会从 T5 开始提取文档。此外,由于只会提取满足 modification_time < NOW() 的文档,所以仅会提取到截至(含)T9 的文档。再说一遍,这意味着 T9 中的所有文档都已提取出来,而且对于下一次迭代 sql_last_value 将会设置为 T9。所以这一方法消除了对于任何给定时间间隔仅检索到 MySQL 文档的一个子集的风险。

108.png


五.和监控mysql的binlog日志实现数据同步对比


针对mysql数据到ES的数据同步,还有一种典型的实现方式是实时监控mysql的binlog,然后解析sql对ES进行数据同步。典型的实现是cannal监控binlog。


实时性

Logstash是通过定时轮询查询mysql表的新增数据进行同步,实时性收到同步周期的影响。同步周期最低是分钟级别。

通过监控mysql的binlog变化来同步数据到ES,可以实现准实时的数据同步。


复杂性

通过Logstash实现mysql到es的数据同步相对更简单,通过cannal监控mysql的binlog实现起来更加复杂。


全量更新

Logstash既可以支持全量数据更新,也支持增量数据更新。

而cannal的数据同步更依赖binlog日志,如果没有完整的binlog日志,则没办法实现全量更新。


增量更新的限制性

Logstash的增量更新依赖于表字段,自增主键或者数据更新时间。如果表中没有能识别增量数据的字段,则无法实现增量更新。

cannal数据同步主要依赖binlog日志,对表字段没有限制。


总结


本文主要是介绍了通过Logstash实现mysql数据定时增量同步到ES。

1、在配置Logstash中输入statement 参数SQL读取mysql增量数据时,需要注意临界条件的控制,modification_time大于sql_last_value并且小于NOW(),避免数据漏传或多传。


2、LogStash和监控Binlog日志实现数据同步的区别和适用场景。


参考文章:

1、如何使用 Logstash 和 JDBC 确保 Elasticsearch 与关系型数据库保持同步

2、Ingest data from a relational database into Elastic Cloud Enterprise

3、如何将mysql数据同步到es

4、Logstash 从Mysql同步数据到ES

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
14天前
|
监控 关系型数据库 MySQL
Flink CDC MySQL同步MySQL错误记录
在使用Flink CDC同步MySQL数据时,常见的错误包括连接错误、权限错误、表结构变化、数据类型不匹配、主键冲突和
57 16
|
22天前
|
存储 关系型数据库 MySQL
mysql怎么查询longblob类型数据的大小
通过本文的介绍,希望您能深入理解如何查询MySQL中 `LONG BLOB`类型数据的大小,并结合优化技术提升查询性能,以满足实际业务需求。
87 6
|
1月前
|
SQL 关系型数据库 MySQL
mysql分页读取数据重复问题
在服务端开发中,与MySQL数据库进行数据交互时,常因数据量大、网络延迟等因素需分页读取数据。文章介绍了使用`limit`和`offset`参数实现分页的方法,并针对分页过程中可能出现的数据重复问题进行了详细分析,提出了利用时间戳或确保排序规则绝对性等解决方案。
|
2月前
|
关系型数据库 MySQL 数据库
GBase 数据库如何像MYSQL一样存放多行数据
GBase 数据库如何像MYSQL一样存放多行数据
|
2月前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
74 14
|
13天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
39 3
|
13天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
42 3
|
13天前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE &#39;log_%&#39;;`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
54 2
|
26天前
|
关系型数据库 MySQL 数据库
Python处理数据库:MySQL与SQLite详解 | python小知识
本文详细介绍了如何使用Python操作MySQL和SQLite数据库,包括安装必要的库、连接数据库、执行增删改查等基本操作,适合初学者快速上手。
181 15
|
20天前
|
SQL 关系型数据库 MySQL
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。