Apache RocketMQ 在阿里云大规模商业化实践之路

本文涉及的产品
性能测试 PTS,5000VUM额度
应用实时监控服务-应用监控,每月50GB免费额度
云原生网关 MSE Higress,422元/月
简介: RocketMQ 5.0 发布后,阿里云商业会持续采取 OpenCore 的发展模式,秉承上游优先的社区发展原则,与社区一起将 RocketMQ 打造为一个超融合的数据处理平台。

作者:周新宇


阿里云消息队列 RocketMQ 商业化历程


1.png


RocketMQ 诞生于 2012 年,诞生即开源。2012~2015 年,RocketMQ 一直在通过内部电商业务打磨自身服务能力,并在 2015 年于阿里云上线公测。2016 年,阿里云 RocketMQ 完成商业化,同时被捐赠给 Apache 基金会,同年获得了年度受欢迎中国开源软件荣誉。


在 Apache 孵化期间,Apache RocketMQ 经历了快速发展,2017 年即毕业成为了 Apache 顶级项目。同年,Apache RocketMQ TLP RocketMQ 4.0 正式发布。此后,RocketMQ 4.0 经历了长足发展,期间阿里云商业和开源相辅相成、齐头并进,直到今天,共同迈入 RocketMQ 5.0 时代。


RocketMQ 5.0 发布后,阿里云商业会持续采取 OpenCore 的发展模式,秉承上游优先的社区发展原则,与社区一起将 RocketMQ 打造为一个超融合的数据处理平台。


阿里云消息队列产品矩阵

2.png


阿里云基于 RocketMQ 消息底座,构建了多元化的消息产品系列。


RocketMQ 是阿里云主打的消息品牌,互联网新兴业务领域首选的数据通道。消息队列 Kafka 是大数据的首选数据通道,微消息队列 MQTT 是移动互联网和物联网的数据通道,消息队列 RocketMQ 是传统业务领域的数据通道。消息服务 MNS 是 RocketMQ 轻量版,主要应用于应用集成领域,为平台型应用提供简单的队列服务。事件总线 Event Bridge 定位为云上事件枢纽,旨在阿里云上构建统一的事件中心。


阿里云消息队列产品矩阵完全构建在 RocketMQ 之上,基本实现了应用场景全覆盖,包括微服务解耦、SaaS 集成、物联网、大数据或日志收集生态,同时也在内部覆盖了阿里巴巴所有业务,在云上为数万阿里云企业提供了优质的消息服务。阿里云的消息产品矩阵涵盖了互联网、大数据、移动互联网等领域业务场景,为云原生客户提供不可或缺的一站式解决方案。


RocketMQ 在阿里云商业化历程中,一直致力于探索业务消息实践,也孵化了大量业务消息特性,并持续反哺到开源社区。


RocketMQ 4.0 业务消息探索之路

3.png


RocketMQ 在商业化过程中,陆续推出了四种消息类型来满足丰富的业务场景。


  • 普通消息:普通消息提供极致弹性、海量堆积能力,内置重试与死信队列来满足业务对失败重试的需求,同时具备高吞吐、高可用、低延迟等特性,广泛应用于应用集成、异步解耦、削峰填谷等场景。


  • 定时消息:提供秒级定时精度, 40 天超长定时,主要面向分布式定时调度、任务超时处理等场景,目前正在开源中。 


  • 顺序消息:支持全局与局部严格有序,从发送、存储到消费,保证端到端有序。面向有序事件处理、撮合交易、数据实时增量同步等场景。


  • 事务消息:分布式、高性能、高可用的最终一致性事务解决方案,广泛应用于电商交易系统中服务的一致性协调场景并且已经开源。 

4.png


RocketMQ 4.0 期间,商业和开源都致力于全方位拓展消息接入能力,使 RocketMQ 能够非常轻松地连接应用开源和云产品生态。比如商业上提供了多语言 SDK ,开源也有相应的 SDK 能够覆盖 Java、Go、Python 、C++使用 RocketMQ。同时支持 Spring 生态,能够通过 Spring Cloud 的方式使用 RocketMQ。商业上提供了一组非常简单易用的 HTTP API,提供了 6-7 种语言的实现。


除了 SDK 接入,RocketMQ 也在积极拥抱社区标准,在云产品侧提供了 AMQP 和 MQTT 的接入能力,其中 MQTT 已开源。


RocketMQ 也大力在发展 connector 生态,能够通过 RocketMQ connector 接入很多数据源,包括 Redis、MongoDB、Hudi 等大数据系统。


另外,阿里云构建的事件总线 EventBridge 也已开源,通过该产品能够将阿里云的云产品、SaaS 应用、自建数据平台的数据引入 RocketMQ。


RocketMQ 4.0 版本做了大量尝试,提供了全方位的消息接入能力。


5.png


RocketMQ 在服务阿里集团用户和商业化历程中,沉淀了大量领先的业务消息处理与服务能力。比如消息订阅方面,RocketMQ 支持集群分布式消费能力,也支持广播消费。在消息处理方面支持基于 Tag 和 SQL 做灵活过滤,其中基于 SQL 过滤是电商交易中非常重要的特性,能够支持在非常订阅比的情况下实现较低的投递比。


全球消息路由能力具备性能高、实时性强的特点。在云时代,数据中心天然分布在各个地域,各个地域之间还有 VPC 网络隔离。但是通过全球消息路由功能可以将地域与网络打通,能够满足更多业务场景。比如在阿里内部基于该能力实现了异地多活、异地容灾等企业级特性。


另外,全球消息路由具备非常高的易用性,提供了可视化任务管理界面,通过简单配置即可创建复制链路。


消息治理方面,RocketMQ 提供了访问控制、命名空间、实例限流、消息回放、重试消息、死信消息、堆积治理等能力。


服务能力方面,RocketMQ 经历了非常多沉淀,它在为交易链路服务了 12  年,参加了 10 年双 11,这也保证了 RocketMQ 能够在阿里云上提供非常高的可靠性。双 11 消息收发 TPS 峰值过亿,日消息收发总量超过 3 万亿。而即使在双十一万亿级数据洪峰下,消息也能做到 99.996% 毫秒级响应能力,消息发布平均响应时间不超过 3 毫秒,最大不超过 20 毫秒,真正实现了低延迟消息发布。


6.png


商业化初期,客户遇到最大难题是在分布式环境下如何完整地追踪异步消息链路。基于此背景,我们打造了可视化全生命周期消息轨迹追踪系统,能够提供丰富的消息查询、消息下载、定点重投、轨迹追踪能力,通过可观测系统帮助用户解决分布式环境中不可观测的问题。


如上图所示,一条消息从产生、发送至服务端存储到最终投递到消费者,整个发送和消费轨迹都有迹可循,包括投递给哪些消费者、哪些消费者在什么地方成功消费或者消费失败、何时进行重投,真正帮助客户解决了分布式观测难题。


7.png


除了功能特性,RocketMQ 在稳定性方面也做了很多建设。我们始终坚持,SLA 是云原生的根本,因此整个研发运维链路都有严格的稳定性保障措施:


  • 架构开发:每个方案设计都会面向失败设计,代码开发阶段会有严格 Code Review 阶段,也会完整经历单元测试、集成测试、性能测试和容灾测试流程。


  • 变更管理:有着非常严格的变更制度,要做到每个变更可灰度、可监控、可回滚、可降级。


  • 稳定性防护:提供了限流、降级、容量评估、应急方案、大促保障等能力,会定期进行故障和预案演练,定期进行风险梳理。


  • 体系化巡检:在云上有全方位的生产环境黑盒巡检。基于用户视角,会对全地域所有功能做全功能扫描,包含高达 50 多项检测项,任意项功能出问题都能立刻被监测到。在白盒巡检方面,会对 JVM 运行时指标、内核系统、集群指标进行巡检。


  • 故障应急:有完整地故障应急流程,包括监控报警、故障发生、快速止血、排查根因、故障复盘。


RocketMQ 5.0 云原生架构升级之路


云原生时代,云上用户对云产品服务化程度、弹性能力、可控制性能力以及韧性都有了更高的要求。在此背景之下,我们对 RocketMQ 进行了云原生架构升级,这也是 RocketMQ 5.0 的诞生背景。


8.png


  • 轻量级 SDK:基于云原生通信标准 gRPC 开发了一组轻量级 SDK,能够与当前富客户端优势互补。  


  • 无状态消息网关:在核心数据链路推出了无状态消息网关。通过搭建无状态服务节点Proxy,再通过 LB 进行服务暴露,将存储节点数据分离来独立负责核心消息存储和高可用。Proxy 与 Store 节点分离部署,独立弹性。 


  • Leaderless 高可用架构:Store 节点身份完全对等,完全 Leaderless 化,去 ZK 和 HA 管控节点,能够做到非常高的可用性。同时相比传统的 Raft 一致性协议,该 Leaderless 架构能够做到副本数灵活选择,同步异步自动升降级,实现秒级故障转移。高可用架构目前已经完成开源并与 Dledger 进行了融合。 


  • 云原生基础设施:可观测验能力云原生化,OpenTelemetry 标准化。整体架构走向 Kubernetes 化,能够充分利用售卖区的资源弹性能力。


9.png


RocketMQ 4.0 推荐的接入方式主要是富客户端。富客户端提供了诸如客户端侧负载均衡、消息缓存、故障转移等一系列企业级特性。但在云原生时代,轻量级、高性能的客户端更容易被云原生技术栈所集成。


因此,RocketMQ 5.0 重磅推出了全新多语言轻量级 SDK,具有以下优势:


  • 全新极简 API 设计:不可变 API,有完善的错误处理。多语言 SDK 保障 API 在 Native 层面对齐。同时引入了全新的 Simple Consumer,能够支持按消息模型进行消费,用户不再需要关心消息队列,只需要关注消息。 


  • 通信层采用 gRPC 协议:拥抱云原生通信标准,gRPC 能够使服务更易被集成。多语言 SDK 通信代码也可以通过 gRPC 快速生成,更 Native 。 


  • 轻量级实现:采用无状态消费模式,能够大幅降低客户端的实现复杂度。客户端更轻量,采用的应用也更容易被 Serverless化、Mesh 化。 


  • 云原生可观测性:客户端实现了 OpenTelemetry 标准,能够支持以 OpenTelemetry 形式导出 Metrics 与 Tracing。


10.png


RocketMQ 5.0 的另一个重大升级是引入了全新的无状态消费模型。该消费模型完全构建在原先的队列模型之上。队列模型是与存储模型一致的消费模型,消费者完全按照队列做负载均衡,也按照队列做消息拉取,非常适合批量高速拉取以及对单条消息状态不敏感的场景,比如流计算等。


RocketMQ 5.0 推出了 PoP 机制,巧妙地在队列模型之上构建了消息模型,实现了鱼与熊掌兼得。在此消息模型的设计上,业务可以只关心消息而无需关心队列,所有 API 都能够支持单条消息级别的消费、重试、修改不可见时间、删除。


在消息模型下,消息发送过来被存储后,即对消费者可见。消费者通过 Receive Message API 对消息进行消费后,消息进入定时不可见状态。消息超时过后又会重新处于可见状态,能被其他消费者继续消费。某消费者确认消息后,服务端会对该消息进行删除,随即不可见。


基于消息系模型的消费流程下,API 完全面向消息而不是面向队列。而当 PoP 机制遇见了无状态 Proxy,除了存储层,其他节点都是无状态的;客户端、连接和消费也是无状态的,可任意在 Proxy 节点上飘移,真正做到轻量级。


11.png


经过重构,RocketMQ 5.0 的可观测性也走向了云原生标准。


Metrics 侧:

  • 指标涵盖丰富:设计了更丰富的指标,包含消息量、堆积量、各个阶段耗时等指标,每个指标从实例、Topic、消费 GroupID 多维度做聚合和展示。
  • 消息团队实践模板:为用户提供实践模板,并持续迭代更新。
  • Prometheus + Grafana:Prometheus 标准数据格式,利用 Grafana 展示。除了模板,用户也可以自定义展示大盘。


Tracing 侧:

  • OpenTelemetry Tracing 标准:RocketMQ Tracing 标准已经合并到 OpenTelemetry 开源标准,提供了规范和丰富的 messaging tracing 场景定义。
  • 消息领域定制化展示:按照消息维度重新组织抽象的请求 span数据,展示一对多的消费,多次消费信息直观且方便理解。
  • 可衔接 tracing 链路上下游:消息的 tracing 可继承调用上下文,补充到完整的调用链路中,消息链路信息串联了异步链路的上游和下游链路信息。


Logging 侧:

  • Error Code 标准化:不同的错误有唯一的 Error Code。
  • Error Message 完整:包含完整的错误信息和排序所需要的资源信息。
  • Error Level 标准化:细化了各种不同错误信息的日志级别,用户可根据 Error、Warn 等级别配置更适合的监控告警。


12.png

弹性方面,RocketMQ 5.0 商业版能够充分撬动云的计算、存储和网络的池化资源。比如在计算方面,RocketMQ 5.0 所有工作负载完全部署在 ACK 之上,充分利用了 ACK 弹性能力,撬动 ACK 弹性资源。主要依赖 ACK 的两项技术,一是弹性资源池,另一个是 HPA 支持计算能力快速弹性。同时也会在 ACK 之上做跨可用区部署以提供高可用保障。


网络层面,RocketMQ 5.0 也会充分利用阿里云网络设施,为用户提供更便捷的网络访问能力。比如 RocketMQ 5.0 实例能够支持公网随开随用,需要依赖公网做测试的时候即开即用,测试完立即关闭,安全与方便兼具。同时支持多种私网类型的网络形态,包括 Single Tunnel、Private Link,另外也基于 CEN 构建了全球互通设计网络。


存储方面,RocketMQ 5.0 商业版率先引入多级存储概念,基于 OSS 构建二级存储,能够充分利用 OSS 存储的弹性能力,存储计费也转向了按量付费。而用户能够在 RocketMQ 之上自定义消息存储时长,比如将消息从 3 天有效时长延长至 30 天,能够真正将消息变为数据资产。同时利用二级存储能力,将冷热数据分离,为用户提供一致的冷读 SLA 。


RocketMQ 5.0 商业版发布预告


RocketMQ 4.0 历经了五年发展,开源和商业版本共同迈入了 5.0 时代。7 月底,阿里云消息队列将会基于开源版发布全新的 5.0 商业化版本。注:截止发稿前,RocketMQ 5.0 已经在阿里云消息队列 RocketMQ 产品上全新发布,目前支持国内主要地域。


13.png


RocketMQ 5.0 版相对于 4.0 版实例主要有以下几大改变:

第一,新版本、新售卖,更便宜。新版本采取了全新计量方式,有包年、包月型,也有按量付费和公网流量弹性计费。也有更全的售卖体系,比如新增专业版实例,能够满足部分用户需求。同时每个商品系列都新增了测试环境专用实例,能够方便用户以低成本的方式搭建自己的开发环境。


第二,更强弹性,降本提效利器。存储完全走向弹性,能够通过 Serverless 按需使用,按量付费。预留弹性,实例基础规格支持实时升降配,用户可以很方便地在流量到来之前做弹性。此外,专业版支持突发流量弹性,能够解决线上稳定性风险。


第三,全新架构,增强可观测运维。无状态消息消费模型能够解决一些老版本的痛点。同时在可观测上全面采取了云原生接入栈。


消息的全新形态:事件总线 EventBridge


事件总线 EventBridge 已经开源到 RocketMQ 社区中。云原生时代,事件无处不在,云计算资源散落在各地,各类生态孤岛随处可见。因此,以事件和事件驱动的方式来集成这一切是大势所趋。


基于此,阿里云推出了全新事件型产品 EventBridge。该产品构建在 RocketMQ 之上,是 RocketMQ 之上的一个事件驱动架构实践。


14.png


EventBridge 的事件源包括阿里云服务的管控事件比如资源变更事件、审计事件、配置变更事件,阿里云服务的数据事件,也包括自定义应用、SaaS 应用、自建数据平台、其他云厂商服务等。


事件经过 EventBridge 处理后会投递到事件目标,事件目标包括函数计算、消息服务、自建网关、HTTP(S)、短信、邮箱、钉钉等。


事件源到事件目标之间会经历完整的事件处理,包括事件源接入到 EB 后,可以对事件进行过滤、转换、归档、回放等。事件在 EventBridge 整个流程中也有完善的可观测性设计,包括事件查询、链路追踪。事件的接入方式非常丰富,可以通过 OpenAPI 来接入、7 种多语言 SDK、CloudEvents SDK、Web Console 和 Webhook 。


EventBridge 具有如下特点:


  • 能够大幅度减少用户开发成本,用户无需额外开发,通过创建 EventBridge 源、事件目标、事件规则等资源即可实现事件架构。用户可以编写事件规则,对事件做过滤、转换。 


  • 提供原生 CloudEvents 支持,拥抱 CNCF 社区,能够无缝对接社区 SDK 。标准协议也能统一个阿里云事件规范。 


  • 事件 Schema 支持:能够支持事件 Schema 自动探测和校验,支持 Source 和 Target 的 Schema 绑定。 


  • 全球事件任意互通:组建了全球事件任意互通网络,组件了跨地域、跨账户的事件网络,能够支持跨云、跨数据中心的事件路由。


15.png


EventBridge在云上生态已经初具规模,已经集成了 255+ 云产品事件源和 1000+ 事件类型。


EventBridge率先对消息生态做了融合。阿里云的消息产品矩阵生态均通过 EventBridge 做了完全融合。任何一款消息产品与另一款消息产品的数据都能互通。同时,依靠 EventBridge 的全球事件网络,能够为所有消息产品赋予全球消息路由的能力。


EventBridge 目前已经在内部接入钉钉 ISV、聚石塔 ISV,外部也有 50+ SaaS 系统可以通过 Webhook 的方式接入。另外,海量事件源可以触达 10 多种事件目标,已经对接了全系云产品 API ,任何事件都可以驱动全量云产品 API。


加入 Apache RocketMQ 社区


年铸剑,Apache RocketMQ 的成长离不开全球接近 500 位开发者的积极参与贡献,相信在下个版本你就是 Apache RocketMQ 的贡献者,在社区不仅可以结识社区大牛,提升技术水平,也可以提升个人影响力,促进自身成长。感兴趣的同学可以加入钉钉群与 RocketMQ 爱好者一起广泛讨论:


16.png

钉钉扫码加群


作者介绍:

周新宇 - Apache Member,Apache RocketMQ PMC Member,阿里云消息队列 RocketMQ 研发负责人。


点击此处,进入官网了解更多详情~

相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
1月前
|
消息中间件 运维 Serverless
商业版vs开源版:一图看懂云消息队列 RocketMQ 版核心优势
自建开源 RocketMQ 集群,为保证业务稳定性,往往需要按照业务请求的峰值去配置集群资源。云消息队列 RocketMQ 版 Serverless 实例通过资源快速伸缩,实现资源使用量与实际业务负载贴近,并按实际使用量计费,有效降低企业的运维压力和使用成本。
101 12
|
2月前
|
消息中间件 存储 Serverless
【实践】快速学会使用阿里云消息队列RabbitMQ版
云消息队列 RabbitMQ 版是一款基于高可用分布式存储架构实现的 AMQP 0-9-1协议的消息产品。云消息队列 RabbitMQ 版兼容开源 RabbitMQ 客户端,解决开源各种稳定性痛点(例如消息堆积、脑裂等问题),同时具备高并发、分布式、灵活扩缩容等云消息服务优势。
113 2
|
3月前
|
消息中间件 Java Apache
RocketMQ消息回溯实践与解析
在分布式系统和高并发应用的开发中,消息队列扮演着至关重要的角色,而RocketMQ作为阿里巴巴开源的一款高性能消息中间件,以其高吞吐量、高可用性和灵活的配置能力,在业界得到了广泛应用。本文将围绕RocketMQ的消息回溯功能进行实践与解析,分享工作学习中的技术干货。
91 4
|
5月前
|
消息中间件 人工智能 Apache
Apache RocketMQ 中文社区全新升级!
RocketMQ 中文社区升级发布只是起点,我们将持续优化体验细节,推出更多功能和服务,更重要的是提供更多全面、深度、高质量的内容。
601 19
|
4月前
|
消息中间件 弹性计算 Kubernetes
RabbitMQ与容器化技术的集成实践
【8月更文第28天】RabbitMQ 是一个开源消息代理和队列服务器,用于在分布式系统中存储、转发消息。随着微服务架构的普及,容器化技术(如 Docker 和 Kubernetes)成为了部署和管理应用程序的标准方式。本文将探讨如何使用 Docker 和 Kubernetes 在生产环境中部署和管理 RabbitMQ 服务,同时保证高可用性和弹性伸缩能力。
85 3
|
3天前
|
消息中间件 Java 开发工具
【实践】快速学会使用云消息队列RabbitMQ版
本次分享的主题是快速学会使用云消息队列RabbitMQ版的实践。内容包括:如何创建和配置RabbitMQ实例,如Vhost、Exchange、Queue等;如何通过阿里云控制台管理静态用户名密码和AccessKey;以及如何使用RabbitMQ开源客户端进行消息生产和消费测试。最后介绍了实验资源的回收步骤,确保资源合理利用。通过详细的操作指南,帮助用户快速上手并掌握RabbitMQ的使用方法。
34 10
|
2月前
|
消息中间件 安全 Java
云消息队列RabbitMQ实践解决方案评测
一文带你详细了解云消息队列RabbitMQ实践的解决方案优与劣
93 10
|
2月前
|
消息中间件
解决方案 | 云消息队列RabbitMQ实践获奖名单公布!
云消息队列RabbitMQ实践获奖名单公布!
|
2月前
|
消息中间件 存储 弹性计算
云消息队列RabbitMQ实践
云消息队列RabbitMQ实践
|
2月前
|
消息中间件 存储 弹性计算
云消息队列 RabbitMQ 版实践解决方案评测
随着企业业务的增长,对消息队列的需求日益提升。阿里云的云消息队列 RabbitMQ 版通过架构优化,解决了消息积压、内存泄漏等问题,并支持弹性伸缩和按量计费,大幅降低资源和运维成本。本文从使用者角度详细评测这一解决方案,涵盖实践原理、部署体验、实际优势及应用场景。

相关产品

  • 云消息队列 MQ
  • 推荐镜像

    更多