【图像分割】基于超像素的快速模糊聚类算法(SFFCM) 实现彩色图像分割附matlab代码

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 【图像分割】基于超像素的快速模糊聚类算法(SFFCM) 实现彩色图像分割附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

大量改进的模糊 c 均值 (FCM) 聚类算法已广泛用于灰度和彩色图像分割。然而,由于两个原因,它们中的大多数都是耗时的并且无法为彩色图像提供所需的分割结果。第一个是由于聚类中心和局部相邻窗口内的像素之间的重复距离计算,局部空间信息的结合通常会导致高计算复杂度。另一个是规则的相邻窗口通常会破坏图像的真实局部空间结构,从而导致分割效果不佳。在这项工作中,我们提出了一种基于超像素的快速 FCM 聚类算法,该算法比用于彩色图像分割的最先进的聚类算法明显更快、更稳健。为了获得更好的局部空间邻域,我们首先定义了多尺度形态梯度重建操作,以获得具有精确轮廓的超像素图像。与传统的固定大小和形状的相邻窗口相比,超像素图像提供了更好的自适应和不规则的局部空间邻域,有助于改进彩色图像分割。其次,基于获得的超像素图像,通过计算超像素图像每个区域的像素数,有效地简化了原始彩色图像,并轻松计算出其直方图。最后,我们在超像素图像上使用直方图参数实现 FCM,得到最终的分割结果。

⛄ 部分代码

clear all

close all

%%

cluster=2;

f_ori=imread('12003.jpg');


% Note that you can repeat the program for several times to obtain the best

% segmentation result for image '12003.jpg'

%% generate superpixels

%SFFCM only needs a minimal structuring element for MMGR, we usually set SE=2 or SE=3 for

%MMGR.

SE=3;

L1=w_MMGR_WT(f_ori,SE);

L2=imdilate(L1,strel('square',2));

[~,~,Num,centerLab]=Label_image(f_ori,L2);

%% fast FCM

Label=w_super_fcm(L2,centerLab,Num,cluster);

Lseg=Label_image(f_ori,Label);

figure,subplot(121),imshow(f_ori);title('分割图')

subplot(122),imshow(Lseg);title('分割图')

⛄ 运行结果

⛄ 参考文献

[1] Lei T ,  Jia X ,  Zhang Y , et al. Superpixel-Based Fast Fuzzy C-Means Clustering for Color Image Segmentation[J]. Fuzzy Systems, IEEE Transactions on, 2018.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
3月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
193 6
|
4天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
106 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
2月前
|
存储 算法 程序员
C 语言递归算法:以简洁代码驾驭复杂逻辑
C语言递归算法简介:通过简洁的代码实现复杂的逻辑处理,递归函数自我调用解决分层问题,高效而优雅。适用于树形结构遍历、数学计算等领域。
|
3月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
99 1
|
3月前
|
存储 缓存 算法
通过优化算法和代码结构来提升易语言程序的执行效率
通过优化算法和代码结构来提升易语言程序的执行效率
|
3月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
3月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
3月前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
67 3
|
3月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码

热门文章

最新文章