吴恩达《机器学习》课程总结(18)应用实例:图片文字识别

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 18.1问题描述和流程图(1)图像文字识别是从给定的一张图片中识别文字。(2)流程包括:1.文字侦测2.字符切分(现在不需要切分了)3.字符分类18.2滑动窗口在行人检测中,滑动窗口是首先训练一个固定尺寸输入的判断是否有行人的网络,然后在一张图片中裁该尺寸的图片,送入到网络中;然后不断移动裁剪区,重复以上过程,知道裁剪到最后,这时按比例放大裁剪区,然后将裁剪到的图片缩放到网络的输入,如此循环。

18.1问题描述和流程图

(1)图像文字识别是从给定的一张图片中识别文字。

(2)流程包括:

1.文字侦测

2.字符切分(现在不需要切分了)

3.字符分类

18.2滑动窗口

在行人检测中,滑动窗口是首先训练一个固定尺寸输入的判断是否有行人的网络,然后在一张图片中裁该尺寸的图片,送入到网络中;然后不断移动裁剪区,重复以上过程,知道裁剪到最后,这时按比例放大裁剪区,然后将裁剪到的图片缩放到网络的输入,如此循环。

首先滑动窗口同样用于文字识别,做字符与非字符区分,然后把字符区域适当扩展,然后合并重叠区域,按照高宽比进行过滤(认为长度大于高度),如下图所示:

然后进行文字的分割,通用训练一个模型,数据集如下:

分割出单个字符之后,利用神经网络、支持向量机或者逻辑回归训练一个分类器即可。

18.3获取大量数据和人工数据

(1)从网上下载字体,然后随机添加跟着背景创造实例;

(2)利用已有数据进行旋转、扭曲、模糊处理等产生新数据;

有关获取更多数据的方法:

(1)人工数据合成;

(2)手动收集、标记数据;

(3)众包;

18.4上限分析:哪部分管道该接下去做

如下下面的流程中,本来正确率为72%,如果提供完全正确的文字检测作为文字分割的输入,发现系统正确率提升到了89%,说明要下功夫在文字检测上了。

下表是每一步如果完全正确,会带来多大的提升,如果提升越大,说明越要花功夫在这一步上。下表首先要花功夫在文字检测上,然后是文字识别,而文字分割已经做得很好了。

目录
打赏
0
12
12
0
45
分享
相关文章
|
10月前
|
一键生成视频!用 PAI-EAS 部署 AI 视频生成模型 SVD 工作流(清晰的实例)
用 PAI-EAS 部署 AI 视频生成模型 SVD 工作流(清晰的实例)
288 2
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
【机器学习】正则化,欠拟合与过拟合(详细代码与图片演示!助你迅速拿下!!!)
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
62 1
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
【机器学习】集成学习在信用评分领域实例
【机器学习】集成学习在信用评分领域实例
165 1
以LLaMa 65B模型训练实例来计算AI/HPC算力光模块数量
本文介绍了如何根据LLaMa 65B模型训练需求计算所需的AI/HPC光模块数量。在案例中,使用2048个A100 GPU,单GPU算力为156 TFLOPS。模型算力需求为546*10^21 FLOPS,预计训练时间为20天。采用两层Fat-Tree网络架构,需1024个400G网卡,48台交换机,若全用400G光模块则需4096个,交换机间2048个,网卡间1024个。大成鹏通信提供200G至800G的解决方案,并提供咨询与支持服务。
171 0
以LLaMa 65B模型训练实例来计算AI/HPC算力光模块数量

热门文章

最新文章