试用P范数下的最小二乘法解决图像恢复示例

简介: 试用P范数下的最小二乘法解决图像恢复示例

前言


  图像恢复过程是一个图像信息系统不完善的逆操作。而在进一步进行图像处理之前,传统方法常常会先降低噪声或者去除噪声。P范数下的最小二乘法估计就是最常用的方法之一,此方法会产生一个线性方程组,通过解线性方程组能够得到降低噪声或者去除噪声的图像。但图像的一个主要特点是它们的非平稳性,图像有很多局部特征以及全局特征不能被很好描述。因此线性算法一般被要求具有有限的性能和自适应的非线性过程。




预处理


  我们可以应用预处理适用于两种不同的时间依赖模型。针对非线性扩散问题,这种初值的小改变不仅能够提高图像恢复的效果,而且能够缩短处理时间。它的思想是在其他计算之前添加一个“低通过滤器”,例如,在求解非线性扩散问题前,去除噪声技术的应用。这种预处理方法可以有两种主要的数值特征,如下:


(1)一个好的初始值能够加快算法的收敛,同时图像也能够保存它的非线性特征。


(2)更好的去噪并得到较好的复原效果。


部分模糊噪声图像

image.png

修复后的图像:

image.png




总结


  根据上述实验数据可以得到,这种简单的初始值预处理,它适用于本文中的两种时间依赖模型。我们可以认为它是在其他计算之前添加了一个“低通过滤器”,例如,在求解非线性扩散问题前,去除噪声技术的应用。而且我们得到了一个L1和L2范数的合适组合。这种预处理方法有以下两种主要的数值特征:


(1)一个好的初始值能够加快算法的收敛同时图像也能够保存它的非线性特征。(L1范数最小化过程)


(2)更好的去噪(基于L2范数的预处理)并得到较好的复原效果。


  数值试验说明我们的非线性扩散问题的初始值预处理相对来说比之前的模型要好。



目录
打赏
0
0
0
0
181
分享
相关文章
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
基于均值坐标(Mean-Value Coordinates)的图像融合算法的优化实现
78 0
|
11月前
样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据
样条曲线分段线性回归模型piecewise regression估计个股beta值分析收益率数据
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据
|
11月前
|
数学建模函数插值与拟合
数学建模函数插值与拟合
82 0
【MATLAB第52期】基于MATLAB的高斯过程GPR超参数(sigma)自动优化算法 时间序列预测模型 五折交叉验证
使用GPR自动优化函数,对sigma进行自动寻优。一列时间序列数据 ,滑动窗口尺寸为15。适应度值log(1+loss)。
【MATLAB第52期】基于MATLAB的高斯过程GPR超参数(sigma)自动优化算法 时间序列预测模型 五折交叉验证
使用稀疏性(微球)进行色谱图基线估计和去噪(Matlab代码实现)
使用稀疏性(微球)进行色谱图基线估计和去噪(Matlab代码实现)
182 0
【MATLAB第15期】基于matlab的多输入多输出最小二乘支持向量回归法LSSVR回归预测模型#十次交叉验证选择最优参数
【MATLAB第15期】基于matlab的多输入多输出最小二乘支持向量回归法LSSVR回归预测模型#十次交叉验证选择最优参数
数字图像处理实验(一)|图像的基本操作和基本统计指标计算{图像读取imread、图像写入imwrite、图像显示imshow、图像的相关统计量|均值、方差、大小尺寸裁减旋转|}(附实验代码和实验截图)
数字图像处理实验(一)|图像的基本操作和基本统计指标计算{图像读取imread、图像写入imwrite、图像显示imshow、图像的相关统计量|均值、方差、大小尺寸裁减旋转|}(附实验代码和实验截图)
581 0
数字图像处理实验(一)|图像的基本操作和基本统计指标计算{图像读取imread、图像写入imwrite、图像显示imshow、图像的相关统计量|均值、方差、大小尺寸裁减旋转|}(附实验代码和实验截图)
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等