R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据

简介: R语言非参数方法:使用核回归平滑估计和K-NN(K近邻算法)分类预测心脏病数据

本文考虑一下基于核方法进行分类预测。注意,在这里,我们不使用标准逻辑回归,它是参数模型。

非参数方法

用于函数估计的非参数方法大致上有三种:核方法、局部多项式方法、样条方法。

非参的函数估计的优点在于稳健,对模型没有什么特定的假设,只是认为函数光滑,避免了模型选择带来的风险;但是,表达式复杂,难以解释,计算量大是非参的一个很大的毛病。所以说使用非参有风险,选择需谨慎。

非参的想法很简单:函数在观测到的点取观测值的概率较大,用x附近的值通过加权平均的办法估计函数f(x)的值。

核方法

当加权的权重是某一函数的核,这种方法就是核方法,常见的有Nadaraya-Watson核估计与Gasser-Muller核估计方法,也就是很多教材里谈到的NW核估计与GM核估计,这里我们还是不谈核的选择,将一切的核估计都默认用Gauss核处理。

NW核估计形式为:

GM核估计形式为:

式中

数据

使用心脏病数据,预测急诊病人的心肌梗死,包含变量:

心脏指数

心搏量指数

舒张压

肺动脉压

心室压力

肺阻力

是否存活

既然我们知道核估计是什么,我们假设k是N(0,1)分布的密度。在x点,使用带宽h,我们得到以下代码

dnorm(( 心搏量指数-x)/bw, mean=0,sd=1)
weighted.mean( 存活,w)}
plot(u,v,ylim=0:1,

当然,我们可以改变带宽。

Vectorize( mean_x(x,2))(u)


我们观察到:带宽越小,我们得到的方差越大,偏差越小。“越大的方差”在这里意味着越大的可变性(因为邻域越小,计算平均值的点就越少,估计值也就越不稳定),以及“偏差越小”,即期望值应该在x点计算,所以邻域越小越好。

使用光滑函数

用R函数来计算这个核回归。

smooth( 心搏量指数, 存活, ban  = 2*exp(1)

我们可以复制之前的估计。然而,输出不是一个函数,而是两个向量序列。此外,正如我们所看到的,带宽与我们以前使用的带宽并不完全相同。

smooth(心搏量指数,存活,"normal",bandwidth = bk)
optim(bk,f)$par}
x=seq(1,10,by=.1)
plot(x,y)
abline(0,exp(-1),col="red")


斜率为0.37,实际上是e^{-1}。

高维应用

现在考虑我们的双变量数据集,并考虑一些单变量(高斯)核的乘积


w = dnorm((df$x1-x)/bw1, mean=0,sd=1)*
      dnorm((df$x2-y)/bw2, mean=0,sd=1)
  w.mean(df$y=="1",w)
contour(u,u,v,levels = .5,add=TRUE)

我们得到以下预测

在这里,不同的颜色是概率。

K-NN(k近邻算法)

另一种方法是考虑一个邻域,它不是用到点的距离来定义的,而是用我们得到的n观测值来定义k邻域(也就是k近邻算法)。

接下来,我们自己编写函数来实现K-NN(k近邻算法):

困难的是我们需要一个有效的距离。

如果每个分量的单位都非常不同,那么使用欧几里德距离将毫无意义。所以,我们考虑马氏距离

mahalanobis = function(x,y,Sinv){as.numeric(x-y)%*%Sinv%*%t(x-y)}
mahalanobis(my[i,1:7],my[j,1:7])


这里我们有一个函数来寻找k最近的邻居观察样本。然后可以做两件事来得到一个预测。我们的目标是预测一个类,所以我们可以考虑使用一个多数规则:对yi的预测与大多数邻居样本的预测是一样的。

for(i in 1:length(Y)) Y[i] = sort( 存活[k_closest(i,k)])[(k+1)/2]

我们也可以计算出最近邻居中黑点的比例。它实际上可以被解释为是黑色的概率,

for(i in 1:length(Y)) Y[i] = mean( 存活[k_closest(i,k)])

我们可以在数据集上看到观察结果,基于多数原则的预测,以及死亡样本在7个最近的邻居中的比例

k_ma(7),PROPORTION=k_mean(7))

这里,我们得到了一个位于 x 的观测点的预测,但实际上,可以寻找任何 x的最近邻k。回到我们的单变量例子(得到一个图表),我们有


w = rank(abs(心搏量指数-x),method ="random")
  mean(存活[which(<=9)])}

不是很平滑,但我们的点也不是很多。

如果我们在二维数据集上使用这种方法,我们就会得到以下的结果。

k = 6
   dist = function(j)  mahalanobis(c(x,y))
  vect = Vectorize( dist)(1:nrow(df)) 
  idx  = which(rank(vect<=k)
 
contour(u,u,v,levels = .5,add=TRUE)

这就是局部推理的思想,用kernel对 x的邻域进行推理,或者用k-NN近邻。

相关文章
|
27天前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
25天前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
26天前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
26天前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
2月前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
63 3
|
3月前
|
算法 搜索推荐
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较
支付宝商业化广告算法问题之基于pretrain—>finetune范式的知识迁移中,finetune阶段全参数训练与部分参数训练的效果如何比较
|
4月前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
60 7
|
3月前
|
算法
基于EM期望最大化算法的GMM模型参数估计matlab仿真
此程序在MATLAB 2022a中实现了基于EM算法的GMM参数估计,用于分析由多个高斯分布组成的混合数据。程序通过迭代优化各高斯组件的权重、均值与协方差,直至收敛,并输出迭代过程的收敛曲线及最终参数估计结果。GMM假设数据由K个高斯分布混合而成,EM算法通过E步计算样本归属概率,M步更新参数,循环迭代直至收敛。
|
4月前
|
机器学习/深度学习 数据采集 算法
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
Python实现GBDT(梯度提升树)分类模型(GradientBoostingClassifier算法)并应用网格搜索算法寻找最优参数项目实战
149 3