【MATLAB第52期】基于MATLAB的高斯过程GPR超参数(sigma)自动优化算法 时间序列预测模型 五折交叉验证

简介: 使用GPR自动优化函数,对sigma进行自动寻优。一列时间序列数据 ,滑动窗口尺寸为15。适应度值log(1+loss)。

一、效果展示

2023-07-06_202404.png
2023-07-06_202417.png
2023-07-06_202320.png
2023-07-06_202329.png

二、优化思路

1.数据
一列时间序列数据 ,滑动窗口尺寸为15。
2.思路
使用GPR自动优化函数,对sigma进行自动寻优。
适应度值log(1+loss)。
迭代次数默认30.

三、代码展示

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据(时间序列的单列数据)
result = xlsread('数据集.xlsx');

%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 15;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测

%%  构造数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end

%%  划分训练集和测试集
temp = 1: 1: 922;

P_train = res(temp(1: 700), 1: 15)';
T_train = res(temp(1: 700), 16)';
M = size(P_train, 2);

P_test = res(temp(701: end), 1: 15)';
T_test = res(temp(701: end), 16)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

%训练模型  这个是模型参数 ,运行较好地结果 
gprMdl= fitrgp(p_train,t_train,'OptimizeHyperparameters','auto','HyperparameterOptimizationOptions',...
     struct('Optimizer','randomsearch'));%训练高斯过程模型 HyperparameterOptimizationOptions 五折交叉验证自动优化超参数sigma

%gprMdl = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim1] = gprpre(gprMdl);
T_sim1=mapminmax('reverse',t_sim1, ps_output);%训练集拟合结果

[t_sim2,~,~] = predict(gprMdl,p_test);
T_sim2=mapminmax('reverse',t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1' - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim1, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim2, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化后测试集预测结果对比';['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid


%%  相关指标计算
%  R2
R1 = 1 - norm(T_train - T_sim1')^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化后训练集数据的R2为:', num2str(R1)])
disp(['优化后测试集数据的R2为:', num2str(R2)])

%  MAE
mae1 = sum(abs(T_sim1' - T_train)) ./ M ;
mae2 = sum(abs(T_sim2' - T_test )) ./ N ;

disp(['优化后训练集数据的MAE为:', num2str(mae1)])
disp(['优化后测试集数据的MAE为:', num2str(mae2)])

%  MBE
mbe1 = sum(T_sim1' - T_train) ./ M ;
mbe2 = sum(T_sim2' - T_test ) ./ N ;

disp(['优化后训练集数据的MBE为:', num2str(mbe1)])
disp(['优化后测试集数据的MBE为:', num2str(mbe2)])

%% 优化前 Sigma = 0.5
%gprMdl1 = fitrgp(p_train,t_train,'Basis','None','KernelFunction','Exponential');
[t_sim11] = gprpre(gprMdl1);
T_sim11=mapminmax('reverse',t_sim11, ps_output);%训练集拟合结果
L1 = resubLoss(gprMdl1)%损失函数

[t_sim22,~,~] = predict(gprMdl1,p_test);
T_sim22=mapminmax('reverse',t_sim22, ps_output);

%%  均方根误差
error11 = sqrt(sum((T_sim11' - T_train).^2) ./ M);
error22 = sqrt(sum((T_sim22' - T_test ).^2) ./ N);

%%  绘图
figure()
subplot(211)
plot(1: M, T_train, 'r-', 1: M, T_sim11, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前训练集预测结果对比'; ['RMSE=' num2str(error11)]};
title(string)
xlim([1, M])
grid

subplot(212)
plot(1: N, T_test, 'r-', 1: N, T_sim22, 'b-', 'LineWidth', 1)
legend('真实值','预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {
   
   '优化前测试集预测结果对比';['RMSE=' num2str(error22)]};
title(string)
xlim([1, N])
grid



%%  相关指标计算
%  R2
R11 = 1 - norm(T_train - T_sim11')^2 / norm(T_train - mean(T_train))^2;
R22 = 1 - norm(T_test -  T_sim22')^2 / norm(T_test -  mean(T_test ))^2;

disp(['优化前训练集数据的R2为:', num2str(R11)])
disp(['优化前测试集数据的R2为:', num2str(R22)])

%  MAE
mae11 = sum(abs(T_sim11' - T_train)) ./ M ;
mae22 = sum(abs(T_sim22' - T_test )) ./ N ;

disp(['优化前训练集数据的MAE为:', num2str(mae11)])
disp(['优化前测试集数据的MAE为:', num2str(mae22)])

%  MBE
mbe11 = sum(T_sim11' - T_train) ./ M ;
mbe22 = sum(T_sim22' - T_test ) ./ N ;

disp(['优化前训练集数据的MBE为:', num2str(mbe11)])
disp(['优化前测试集数据的MBE为:', num2str(mbe22)])
相关文章
|
4天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
117 80
|
4天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
31 16
|
1天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
23天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
18天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
22天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
22天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
232 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
143 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码