PAI AI行业插件OCR识别Quick Start

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
个人证照识别,个人证照识别 200次/月
简介: 机器学习平台PAI(Platform of Artificial Intelligence)上AI行业插件提供视觉模型训练插件和通用模型训练插件,支持在线标注、自动模型训练、超参优化及模型评估。只需要准备少量标注数据,并设置训练时长,就可以得到深度优化的模型。同时,插件平台与PAI-EAS高效对接,可以一键完成模型部署。本文介绍使用视觉模型训练插件进行OCR(Optical Character Recognition)识别的详细流程,以供参考。

Step By Step

  • 1.创建oss bucket,上传测试数据文件:下载OCR Demo数据。
  • 2.创建实例,新建数据集:用于数据标注
  • 3.创建任务
  • 4.查看训练详情
  • 5.服务端部署模型
  • 6.控制台在线调试

一.创建oss bucket,上传测试数据

  • 为了便于测试,可以新建一个Bucket,之后将文本demo上传至新建Bucket中
  • :(1)数据集可以采用纯图片式的,需要手动标注。也可以采用符合数据集规范的带有标注结果的XML文件。本文采用纯图片式的数据集用于测试
      (2)OCR识别的图像需要满足数据集要求和规范,详见使用限制

lQLPJxadVGoeMJbNArPNBZGwTniPhu7h824DAtXaTYAnAA_1425_691.png


二.创建实例,新建数据集:用于数据标注

  • 1.创建实例

lQLPJxadU7504OPNAr3NB2ywcBCdvW59r6QDAtTA_0BCAA_1900_701.png


  • 2.新建数据集

lQLPJxadTv-2wEfNAsXNBqOwP2GN_BZzruEDAsz6jkAGAA_1699_709.png


  • 3.数据标注

lQLPJxad3x5kmWDNAzbNBiKwlx2D1cy3UhQDA7ka4YBvAA_1570_822.png


lQLPJxad4zgH3OjNA0PNBgiwwcybaVCLxNYDA7_SMEBaAA_1544_835.png

三.创建任务

lQLPJxadT_jcfh3NAubNB02wOcK5qGY-bt8DAs6S8UCEAA_1869_742.png


lQLPJxadUA7qPoHNAsTNBhuwt6Kn_n-pu6cDAs63EkB1AA_1563_708.png

四.查看训练详情

lQLPJxad54kZ0xfNAtvNBnSwC3nVWcUmrV8DA8blkwBvAA_1652_731.png


lQLPJxad58Lq2YfNA0fNBb6wy4BUMa1DQwcDA8dEQ8B1AA_1470_839.png

五.服务端部署模型

1661218999713_80AA33D2-51D2-4a8a-AC67-A37DAA9D8B37.png


1661219127405_205AED37-8FE1-4e32-8D4D-F3F6EA3F8864.png


六.控制台在线调试

  • 1.请求Body示例
{
  "dataArray":[
    {
      "name":"image",
      "type":"stream",
      "body":"base64数据"
    }
  ]
}

image.png

  • 3.在线调试

lQLPJxad3bZhf83NAr7NBf6w0HO95k9nE7UDA7bMswBuAA_1534_702.png


1661218935352_D60AC39D-7CC3-4be8-BFCA-7FEEDB2CBC4A.png

更多参考

PAI-AutoLearning 图像分类使用教程

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
8天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
36 3
|
1月前
|
机器学习/深度学习 数据采集 人工智能
AI与机器学习:从理论到实践
【10月更文挑战第2天】本文将深入探讨AI和机器学习的基本概念,以及它们如何从理论转化为实际的应用。我们将通过Python代码示例,展示如何使用机器学习库scikit-learn进行数据预处理、模型训练和预测。无论你是AI领域的初学者,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
14 2
|
3天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
23 2
|
14天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
24天前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
37 3
|
1月前
|
机器学习/深度学习 人工智能 安全
自动化测试的未来:AI与机器学习的结合
随着技术的发展,软件测试领域正迎来一场革命。自动化测试,一度被认为是提高效率和准确性的黄金标准,如今正在被人工智能(AI)和机器学习(ML)的浪潮所推动。本文将探讨AI和ML如何改变自动化测试的面貌,提供代码示例,并展望这一趋势如何塑造软件测试的未来。我们将从基础概念出发,逐步深入到实际应用,揭示这一技术融合如何为测试工程师带来新的挑战和机遇。
57 3
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
自动化测试的未来:AI与机器学习的融合
【9月更文挑战第29天】在软件测试领域,自动化测试一直是提高测试效率和质量的关键。随着人工智能(AI)和机器学习(ML)技术的飞速发展,它们正逐步渗透到自动化测试中,预示着一场测试革命的来临。本文将探讨AI和ML如何重塑自动化测试的未来,通过具体案例展示这些技术如何优化测试流程,提高测试覆盖率和准确性,以及它们对测试工程师角色的影响。
85 7
|
1月前
|
机器学习/深度学习 人工智能 算法
揭秘AI:机器学习的魔法与现实
【9月更文挑战第33天】在这篇文章中,我们将一探究竟,揭开机器学习神秘的面纱,通过直观的解释和代码示例,了解其背后的原理。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息。让我们一起探索机器学习的世界,发现它的奥秘和魅力!

热门文章

最新文章

下一篇
无影云桌面