操作系统顶级会议SOSP 阿里云MaxCompute开启NewSQL时代
近日,第26届操作系统原理大会(SOSP)在上海举行,来自亚洲、欧洲、北美等地区的高校、学术机构和众多科技企业研究人员齐聚一堂。阿里巴巴受邀参加此次会议,除在展区展示系统软件技术的同时,阿里集团副总裁周靖人在BOF环节向参会人员介绍了阿里在数据库、计算、机器学习、网络等领域的多项重点技术。
10亿节点异构网络中,GCN 如何应用?
推荐系统普遍是基于用户偏好的商品或者商品关系来建模学习,这些关系通常可以用网络结构表示,在淘宝这样的复杂场景网络常常是十亿节点和上百亿的边,计算和推理复杂度高挑战大,网络嵌入方法(Network Embedding)能够学习网络中节点的低维度潜在表示,可以用所学表征在低维空间实现相关推荐。本篇论文收录于KDD2019,建议大家收藏阅读哦。
新突破!动态网络表征学习在推荐领域的创新与实践
在现实生活中,用户对于一件事物的关注度即关系图往往是会随着时间而改变的。按照静态图的建模方法将不能显示地建模用户在时序上的兴趣变化。动态网络表征学习不仅能学习到当前网络的结构信息,而且也能学习到网络在时间上的变化,但是目前主要还是针对动态同构网络,本文在此基础上提出了基于层次化注意力机制的动态图表征算法,是推荐底层算法模型上的一次突破。
3亿人在用的钉钉背后,TA的作用功不可没
导读:在6月9日的“全速重构”2020阿里云·线上峰会中,阿里云智能数据库事业部的资深产品专家斗佛开启了全球首发4款云数据库新产品——云数据库专属集群、图数据库GDB、云数据库Cassandra版、云数据库ClickHouse。今天小编为大家带来图数据库GDB助力钉钉构建百亿量级知识图谱的案例。
你真的会学习吗?从结构化思维说起
学习是我们从呱呱坠地开始就在进行的事,从简单的模仿,到系统的训练,学习对我们而言似乎已经习以为常。然而,我们真的学会学习了吗?学习的终极目标是什么?技术性学习思维又有什么不同?本文从结构化思维说起,分享学习如何学习的方法。