图计算

首页 标签 图计算
# 图计算 #
关注
633内容
我在数据中台建设和落地的一些经验总结
数据治理是数字化建设中非常重要的一环。在进行数据治理时,我们需要根据不同的业务场景和需求,选择最适合的数据治理方案,包括选择不同的组件组装和数据存储方式等。对于轻量级数据管理平台和重量级数据管理平台,我们可以针对具体情况进行选择,权衡成本与效益,以满足客户实际需求。在整个数据治理过程中,我们还需要注重客户成本的管理,确保项目的落地和实际效果,并且不断优化数据治理流程,需要积极参与业务需求分析和技术选型,确保数据治理方案符合客户需求和行业标准。
GeaFlow图计算快速上手之K-hop算法
随着年轻人的社交需求不断增长,各种社交软件应运而生,这些社交软件通常都会有好友推荐功能,根据六度分离理论,理想情况下,每个人通过6个人就可以跟所有人产生关联,因此K-hop算法(K跳算法)被用于实现好友推荐,现在让我们来尝试使用GeaFlow在5分钟内实现K-hop算法吧!
关于 LLM 和知识图谱、图数据库,大家都关注哪些问题呢?
此时,距离 ChatGPT 面世已过去半年有余,一起来看看热度散去之后,大家都在关心什么问题。
Pytorch自动求导机制详解
在深度学习中,我们通常需要训练一个模型来最小化损失函数。这个过程可以通过梯度下降等优化算法来实现。梯度是函数在某一点上的变化率,可以告诉我们如何调整模型的参数以使损失函数最小化。自动求导是一种计算梯度的技术,它允许我们在定义模型时不需要手动推导梯度计算公式。PyTorch 提供了自动求导的功能,使得梯度的计算变得非常简单和高效。
10亿节点异构网络中,GCN 如何应用?
小叽导读:推荐系统普遍是基于用户偏好的商品或者商品关系来建模学习,这些关系通常可以用网络结构表示,在淘宝这样的复杂场景网络常常是十亿节点和上百亿的边,计算和推理复杂度高挑战大,网络嵌入方法(Network Embedding)能够学习网络中节点的低维度潜在表示,可以用所学表征在低维空间实现相关推荐。本篇论文收录于KDD2019,建议大家收藏阅读哦。
免费试用