【调度算法】单机调度问题遗传算法

简介: 【调度算法】单机调度问题遗传算法

问题描述

一台机器,n个工件,机器一次只能加工一个工件,求最优方案。

工件 A B C D E F G H I
工件编号 0 1 2 3 4 5 6 7 8
加工时间 4 7 6 5 8 3 5 5 10
到达时间 3 2 4 5 3 2 1 8 6
交货期 10 15 30 24 14 13 20 18 10

目标函数

最小化交货期总延时时间

运算结果

最佳调度顺序: [6, 5, 7, 3, 0, 2, 1, 4, 8]
最小交货期延时时间: 111

python代码

import math
import random
import numpy as np
import matplotlib.pyplot as plt
# 定义遗传算法参数
POP_SIZE = 100  # 种群大小
MAX_GEN = 100  # 最大迭代次数
CROSSOVER_RATE = 0.7  # 交叉概率
MUTATION_RATE = 0.2  # 变异概率
# 随机生成初始种群
def gen_init_pop(pop_size):
    population = []
    for _ in range(pop_size):
        random.shuffle(job)
        population.append(list(job))
    return population
# 计算染色体的适应度(makespan) 以最小化交货期延时为目标函数,这里计算的是交货期总延时时间
def fitness(job):
    n = len(job)
    accu_pro_times = [0] * n  # 累计加工时间
    accu_pro_times[0] = pro_times[job[0]] + arr_times[job[0]]
    for i in range(1, n):
        accu_pro_times[i] = pro_times[job[i]] + accu_pro_times[i - 1] if arr_times[job[i]] <= accu_pro_times[
            i - 1] else arr_times[job[i]] + pro_times[job[i]]
    delay_time = sum([max(accu_pro_times[i] - deadlines[i], 0) for i in range(n)])
    return delay_time
# 选择父代,这里选择POP_SIZE/2个作为父代
def selection(pop):
    fitness_values = [1 / fitness(job) for job in pop]  # 以最小化交货期总延时为目标函数,这里把最小化问题转变为最大化问题
    total_fitness = sum(fitness_values)
    prob = [fitness_value / total_fitness for fitness_value in fitness_values]  # 轮盘赌,这里是每个适应度值被选中的概率
    # 按概率分布prob从区间[0,len(pop))中随机抽取size个元素,不允许重复抽取,即轮盘赌选择
    selected_indices = np.random.choice(len(pop), size=POP_SIZE // 2, p=prob, replace=False)
    return [pop[i] for i in selected_indices]
# 交叉操作 这里是单点交叉
def crossover(job_p1, job_p2):
    cross_point = random.randint(1, len(job_p1) - 1)
    job_c1 = job_p1[:cross_point] + [gene for gene in job_p2 if gene not in job_p1[:cross_point]]
    job_c2 = job_p2[:cross_point] + [gene for gene in job_p1 if gene not in job_p2[:cross_point]]
    return job_c1, job_c2
# 变异操作
def mutation(job):
    index1, index2 = random.sample(range(len(job)), 2)
    job[index1], job[index2] = job[index2], job[index1]
    return job
# 主遗传算法循环
def GA():
    # 创建一个空列表来存储每代的适应度值
    best_job = job  # 获得最佳个体
    # "makespan" 是指完成整个生产作业或生产订单所需的总时间,通常以单位时间(例如小时或分钟)来衡量。
    best_makespan = fitness(job)  # 获得最佳个体的适应度值
    fitness_history = [best_makespan]
    pop = gen_init_pop(POP_SIZE)
    for _ in range(1, MAX_GEN + 1):
        pop = selection(pop)  # 选择
        new_population = []
        while len(new_population) < POP_SIZE:
            parent1, parent2 = random.sample(pop, 2)  # 不重复抽样2个
            if random.random() < CROSSOVER_RATE:
                child1, child2 = crossover(parent1, parent2)  # 交叉
                new_population.extend([child1, child2])
            else:
                new_population.extend([parent1, parent2])
        pop = [mutation(job) if random.random() < MUTATION_RATE else job for job in new_population]
        best_gen_job = min(pop, key=lambda x: fitness(x))
        best_gen_makespan = fitness(best_gen_job)  # 每一次迭代获得最佳个体的适应度值
        if best_gen_makespan < best_makespan:  # 更新最小fitness值
            best_makespan = best_gen_makespan
            best_job = best_gen_job
        fitness_history.append(best_makespan)  # 把本次迭代结果保存到fitness_history中(用于绘迭代曲线)
    # 绘制迭代曲线图
    plt.plot(range(MAX_GEN + 1), fitness_history)
    plt.xlabel('Generation')
    plt.ylabel('Fitness Value')
    plt.title('Genetic Algorithm Convergence')
    plt.show()
    return best_job, best_makespan
def plot_gantt(job, pro_times, arr_times):
    # 计算每个工件的开始时间和结束时间
    start_time = [arr_times[0]]  # 第一个工件的开始时间为0
    end_time = [start_time[0] + pro_times[0]]
    for i in range(1, len(job)):
        start_time.append(max(end_time[i - 1], arr_times[i]))
        end_time.append(start_time[i] + pro_times[i])
    # # 绘制甘特图
    plt.figure(figsize=(10, 7))
    plt.barh(job, pro_times, left=start_time, color='b', label='Processing Time')  # 加工时间
    plt.barh(job, [st - ed for st, ed in zip(start_time, [0] + end_time[:-1])], left=start_time,
             color='g', label='Idle Time')  # 空闲时间
    plt.xlabel('Time')
    plt.ylabel('Jobs')
    plt.title('Gantt Chart')
    plt.legend()
    plt.grid(axis='x')
    # 显示甘特图
    plt.show()
if __name__ == '__main__':
    # 定义单机调度问题的工件和加工时间
    job = [0, 1, 2, 3, 4, 5, 6, 7, 8]  # 工件
    pro_times = [4, 7, 6, 5, 8, 3, 5, 5, 10]  # 加工时间
    arr_times = [3, 2, 4, 5, 3, 2, 1, 8, 6]  # 到达时间
    deadlines = [10, 15, 30, 24, 14, 13, 20, 18, 10]  # 交货期
    best_job, best_makespan = GA()
    best_pro_times = [pro_times[best_job[i]] for i in range(len(best_job))]
    best_arr_times = [arr_times[best_job[i]] for i in range(len(best_job))]
    print("最佳调度顺序:", best_job)
    print("最小交货期延时时间:", best_makespan)
    plot_gantt(best_job, best_pro_times, best_arr_times)


目录
相关文章
|
8天前
|
算法 调度 Python
【调度算法】并行机调度问题遗传算法
【调度算法】并行机调度问题遗传算法
21 2
|
8天前
|
算法 调度
【调度算法】Boltzmann选择
【调度算法】Boltzmann选择
40 1
|
8天前
|
算法 调度 Python
【调度算法】开放车间调度问题遗传算法
【调度算法】开放车间调度问题遗传算法
12 1
|
5天前
|
机器学习/深度学习 算法
简单遗传算法 + 最低水平线算法求解二维排样问题
简单遗传算法 + 最低水平线算法求解二维排样问题
6 0
|
8天前
|
人工智能 算法 网络性能优化
【调度算法】服务组合优选问题的指标选择与评估
【调度算法】服务组合优选问题的指标选择与评估
16 0
|
3天前
|
算法
基于GA遗传优化的混合发电系统优化配置算法matlab仿真
**摘要:** 该研究利用遗传算法(GA)对混合发电系统进行优化配置,旨在最小化风能、太阳能及电池储能的成本并提升系统性能。MATLAB 2022a用于实现这一算法。仿真结果展示了一系列图表,包括总成本随代数变化、最佳适应度随代数变化,以及不同数据的分布情况,如负荷、风速、太阳辐射、弃电、缺电和电池状态等。此外,代码示例展示了如何运用GA求解,并绘制了发电单元的功率输出和年变化。该系统原理基于GA的自然选择和遗传原理,通过染色体编码、初始种群生成、适应度函数、选择、交叉和变异操作来寻找最优容量配置,以平衡成本、效率和可靠性。
|
4天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
4天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
2天前
|
算法 计算机视觉
基于Chan-Vese算法的图像边缘提取matlab仿真
**算法预览展示了4幅图像,从边缘检测到最终分割,体现了在matlab2022a中应用的Chan-Vese水平集迭代过程。核心代码段用于更新水平集并显示迭代效果,最后生成分割结果及误差曲线。Chan-Vese模型(2001)是图像分割的经典方法,通过最小化能量函数自动检测平滑区域和清晰边界的图像分割,适用于复杂环境,广泛应用于医学影像和机器视觉。**
|
7天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
25 6