【Python机器学习专栏】层次聚类算法的原理与应用

简介: 【4月更文挑战第30天】层次聚类是数据挖掘中的聚类技术,无需预设簇数量,能生成数据的层次结构。分为凝聚(自下而上)和分裂(自上而下)两类,常用凝聚层次聚类有最短/最长距离、群集平均和Ward方法。优点是自动确定簇数、提供层次结构,适合小到中型数据集;缺点是计算成本高、过程不可逆且对异常值敏感。在Python中可使用`scipy.cluster.hierarchy`进行实现。尽管有局限,层次聚类仍是各领域强大的分析工具。

在数据挖掘和机器学习领域,聚类是一种探索性数据分析的常用技术,旨在将数据集中的样本划分为若干个不相交的子集,每个子集称为一个“簇”,使得同一个簇内的样本之间相似度较高,而不同簇的样本相似度较低。层次聚类算法作为一种重要的聚类分析方法,因其不需要预先指定簇的数量,且能够生成数据集的层次结构,被广泛应用于市场细分、社交网络分析、生物信息学等领域。本文将探讨层次聚类算法的基本原理、优缺点以及如何在Python中实现层次聚类。

层次聚类算法的基本原理

层次聚类算法通过一种逐步的方式,将数据点合并成一个大的簇或者从一个大簇分裂成小簇。根据合并或分裂的顺序,层次聚类可以分为凝聚(自下而上)和分裂(自上而下)两种类型。

凝聚层次聚类

凝聚层次聚类是最常用的类型,它从将每个数据点视为一个单独的簇开始,然后按照一定的准则逐步合并最接近的两个簇,直到所有的数据点都聚集在一个大的簇中,或者达到某个终止条件。常用的合并准则包括最短距离(单链接)、最长距离(全链接)、群集平均(组平均)和Ward方法等。

分裂层次聚类

分裂层次聚类则相反,它从一个包含所有数据点的单一大簇开始,然后逐步分裂成更小的簇,直到每个数据点都是一个独立的簇,或者达到某个终止条件。

层次聚类算法的优缺点

优点

  • 不需要预先指定簇的数量:层次聚类可以自动确定形成多少个簇,这对于探索性分析非常有用。
  • 形成层次结构:层次聚类提供了数据的层次结构表示,这有助于更好地理解数据的组织结构。
  • 适用于小型到中型数据集:层次聚类通常用于较小的数据集,因为它的时间复杂度较高。

缺点

  • 计算成本高:层次聚类的时间复杂度通常较高,对于大型数据集可能不太适用。
  • 合并或分裂点不可逆:一旦一个步骤完成,就不能撤销,这可能导致错误的决策。
  • 对异常值敏感:层次聚类对于异常值或噪声数据比较敏感,可能会导致不理想的聚类结果。

Python实现

在Python中,我们可以使用scipy库中的hierarchy模块来实现层次聚类算法。

import numpy as np
from scipy.cluster.hierarchy import linkage, dendrogram
from matplotlib import pyplot as plt

# 生成示例数据
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])

# 使用凝聚层次聚类
Z = linkage(X, 'single')

# 绘制树状图
plt.figure(figsize=(10, 7))
dendrogram(Z)
plt.title('Dendrogram')
plt.xlabel('Sample index')
plt.ylabel('Distance')
plt.show()

结语

层次聚类算法提供了一种独特的视角来探索数据的结构和模式,它不需要预先指定簇的数量,并且能够生成数据的层次结构。在Python中,我们可以利用scipy库轻松实现层次聚类,并通过树状图直观地展示聚类过程。尽管层次聚类在某些情况下可能受到计算成本和对异常值敏感性的限制,但它仍然是一个在各种领域中都有广泛应用价值的强大工具。通过适当的预处理和参数调整,我们可以最大限度地发挥层次聚类的潜力,从而更好地理解和解释数据。

相关文章
|
2月前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
212 0
|
3月前
|
数据采集 监控 Java
Python 函数式编程的执行效率:实际应用中的权衡
Python 函数式编程的执行效率:实际应用中的权衡
267 102
|
2月前
|
机器学习/深度学习 算法 安全
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
199 6
|
2月前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
235 0
|
3月前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
252 0
|
3月前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
436 0
|
3月前
|
中间件 机器人 API
Python多态实战:从基础到高阶的“魔法”应用指南
Python多态机制通过“鸭子类型”实现灵活接口,使不同对象统一调用同一方法,自动执行各自行为。它简化代码逻辑、提升扩展性,适用于数据处理、策略切换、接口适配等场景。掌握多态思维,能有效减少冗余判断,使程序更优雅、易维护。
203 0
|
2月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
282 102
|
2月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
307 104
|
2月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
254 103

推荐镜像

更多