基于BP神经网络的64QAM解调算法matlab性能仿真

简介: **算法预览图省略**MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
MATLAB2022A

3.部分核心程序
```% 第一部分:加载并可视化数据
% load data.mat
real1 = [-7 -7 -7 -7 -7 -7 -7 -7 -5 -5 -5 -5 -5 -5 -5 -5 ...
-1 -1 -1 -1 -1 -1 -1 -1 -3 -3 -3 -3 -3 -3 -3 -3 ...
+7 +7 +7 +7 +7 +7 +7 +7 +5 +5 +5 +5 +5 +5 +5 +5 ...
+1 +1 +1 +1 +1 +1 +1 +1 +3 +3 +3 +3 +3 +3 +3 +3 ]./sqrt(42);

imag1 = [-7 -5 -1 -3 +7 +5 +1 +3 -7 -5 -1 -3 +7 +5 +1 +3 ...
-7 -5 -1 -3 +7 +5 +1 +3 -7 -5 -1 -3 +7 +5 +1 +3 ...
-7 -5 -1 -3 +7 +5 +1 +3 -7 -5 -1 -3 +7 +5 +1 +3 ...
-7 -5 -1 -3 +7 +5 +1 +3 -7 -5 -1 -3 +7 +5 +1 +3 ]./sqrt(42);

IQmap = real1'+sqrt(-1)*imag1';

for ij = 1:length(SNR)
ij
for j = 1:20
.......................................................
% 数据划分比例
divT = 0.05; % 训练数据占全部数据的20%
divV = 0.2; % 验证数据占全部数据的10%
% 分割训练集和验证集
SrxT = Srx(1,1:floor(divTlength(Srx)));% 训练集信号
StxT = Stx(1,1:floor(divT
length(Stx)));% 训练集期望结果
SrxV = Srx(1 ,floor(divTlength(Srx))+1:floor((divT+divV)length(Srx)));% 验证集信号
StxV = Stx(1 ,floor(divTlength(Stx))+1:floor((divT+divV)length(Stx)));% 验证集期望结果

    [accuracy,yfit] = func_ANN_QAM(Si, Sh, Nlabel, lambda, IQmap, SrxT, StxT, SrxV, StxV);
    err(ij,j)=1-accuracy/100;
end

end

func_constellation(Srx,Stx,0.5)

figure;
semilogy(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('误码率');
legend('64QAM误码率');

figure
plot(yfit,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('训练迭代次数');
ylabel('神经网络训练曲线');
143

```

4.算法理论概述
64QAM是一种高效的数字调制技术,它通过将6个比特映射到64个不同的复数符号上,以实现高数据传输速率。然而,在通信中,由于信道噪声和多径效应,需要解调器恢复原始的比特序列。基于BP(Backpropagation)神经网络的64QAM解调算法,是一种利用神经网络的非线性映射和学习能力,从失真的接收信号中得到原始信号的技术。
4.png

  BP神经网络是一种多层前馈网络,通过反向传播算法进行学习和优化。在64QAM解调应用中,神经网络的目标是学习从接收到的失真信号到原始比特序列的映射关系。

5.png

   基于BP神经网络的64QAM解调算法,通过神经网络的学习能力,能够有效地从受噪声影响的接收信号中恢复出原始的比特信息,相较于传统的解调方法,它在处理非线性失真和复杂信道条件时表现出了更强的适应性和鲁棒性。
相关文章
|
13天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
9天前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
7天前
|
算法
基于模糊PI控制算法的龙格库塔CSTR模型控制系统simulink建模与仿真
本项目基于MATLAB2022a,采用模糊PI控制算法结合龙格-库塔方法,对CSTR模型进行Simulink建模与仿真。通过模糊控制处理误差及变化率,实现精确控制。核心在于将模糊逻辑与经典数值方法融合,提升系统性能。
|
7天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
7天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
12天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
10天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
216 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
139 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
105 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码