【调度算法】并行机调度问题遗传算法

简介: 【调度算法】并行机调度问题遗传算法

问题描述

m台相同的机器,n个工件,每个工件有1道工序,可按照任意的工序为每个工件分配一台机器进行加工


工件 A B C D E F G H I
工件编号 0 1 2 3 4 5 6 7 8
加工时间 4 7 6 5 8 3 5 5 10
到达时间 3 2 4 5 3 2 1 8 6
交货期 10 15 30 24 14 13 20 18 10

设备数目:3

目标函数

最小化交货期总延时时间

编码说明

记机器数为m,从0开始编号为0,1,...,m-1,记工件数为n,同样从0开始编号。

定义两个变量job_idjob,前者表示工件的加工顺序(不是严格意义上的先加工A再加工B这种顺序,这里的每个工件都是独立的,整一个id只是为了再分配完机器之后自然就能选出一种加工顺序),后者表示每个工件用哪台机器加工。

例如,job_id=[4, 0, 5, 8, 1, 6, 2, 7, 3]job=[0, 1, 2, 2, 1, 0, 2, 1, 0]表示“编号为4的工件被分配给了编号为0的机器”,“编号为0的工件被分配给了编号为1的机器”,编号为0的机器上工件加工的先后顺序为4,6,3,其余类推。

注意,并行机调度问题里边对于染色体的编码一般分为机器选择部分工件排序部分,机器选择部分,就是正常这里应该是先给工件分配机器,再对每台工件上分配的机器进行排序,但是我这个代码里就是先直接对工件进行乱序然后再选择机器,乍一听好像最后的效果差不多,但是看代码就会知道,我代码里是对job_id进行乱序之后,直接就一种群为单位进行选择交叉变异了。即,一个job_id值对应一个种群(而非一个个体,但是理论上应该是每个个体对应于一个不同的顺序),就可能会导致处理大规模问题的时候时间复杂度太高(这里确实是偷懒了但是我这两天看代码真的看麻了5555,菜是原罪),有能力的好兄弟改好了可以踢我一下。

具体思路可以看这篇:https://blog.csdn.net/qq_38361726/article/details/120669250

运算结果

最佳加工顺序: [4, 0, 5, 8, 1, 6, 2, 7, 3]
最佳调度分配: [0, 1, 2, 2, 1, 0, 2, 1, 0]
最小交货期延时时间: 7

python代码

import random
import numpy as np
import matplotlib.pyplot as plt
import copy
# 定义遗传算法参数
POP_SIZE = 100  # 种群大小
MAX_GEN = 100  # 最大迭代次数
CROSSOVER_RATE = 0.7  # 交叉概率
MUTATION_RATE = 0.2  # 变异概率
def sort_by_id(id, sequence):
    # 根据id对sequence进行排序
    new_sequence = sequence[:]
    for i in range(len(id)):
        sequence[i] = new_sequence[id[i]]
# 随机生成初始种群,这里的每个个体表示第i个工件选择在第choose[i]台机器进行加工,工件和机器编码都是从0开始
def get_init_pop(pop_size):
    pop = []
    for _ in range(pop_size):
        choose = []
        for _ in range(len(job_id)):
            choose.append(random.randint(0, machine_num - 1))
        pop.append(list(choose))
    return pop
# 计算染色体的适应度(makespan) 以最小化交货期延时为目标函数,这里计算的是交货期总延时时间
def fitness(job):
    delay_times = [[] for _ in range(machine_num)]  # 每个工件超过交货期的延时时间
    finish_times = [[] for _ in range(machine_num)]  # 每个工件完成加工的时间点
    for i in range(len(job)):
        if finish_times[job[i]]:
            finish_times[job[i]].append(
                pro_times[job_id[i]] + max(finish_times[job[i]][-1], arr_times[job_id[i]]))
        else:
            finish_times[job[i]].append(pro_times[job_id[i]] + arr_times[job_id[i]])
        delay_times[job[i]].append(max(finish_times[job[i]][-1] - deadlines[job_id[i]], 0))
    return sum(element for sublist in delay_times for element in sublist)
# 选择父代,这里选择POP_SIZE/2个作为父代
def selection(pop):
    fitness_values = [1 / fitness(job) for job in pop]  # 以最小化交货期总延时为目标函数,这里把最小化问题转变为最大化问题
    total_fitness = sum(fitness_values)
    prob = [fitness_value / total_fitness for fitness_value in fitness_values]  # 轮盘赌,这里是每个适应度值被选中的概率
    # 按概率分布prob从区间[0,len(pop))中随机抽取size个元素,不允许重复抽取,即轮盘赌选择
    selected_indices = np.random.choice(len(pop), size=POP_SIZE // 2, p=prob, replace=False)
    return [pop[i] for i in selected_indices]
# 交叉操作 这里是单点交叉
def crossover(job_p1, job_p2):
    cross_point = random.randint(1, len(job_p1) - 1)
    job_c1 = job_p1[:cross_point] + job_p2[cross_point:]
    job_c2 = job_p2[:cross_point] + job_p1[cross_point:]
    return job_c1, job_c2
# 变异操作
def mutation(job):
    index = random.randint(0, len(job) - 1)
    job[index] = random.randint(0, machine_num - 1)  # 这样的话变异概率可以设置得大一点,因为实际的变异概率是MUTATION_RATE*(machine_num-1)/machine_num
    return job
# 主遗传算法循环
# 以最小化延迟交货时间为目标函数
# TODO: 没有考虑各机器的负载均衡
def GA(is_shuffle):  # 工件加工顺序是否为无序
    best_id = job_id  # 初始化job_id
    best_job = [0, 0, 0, 0, 0, 0, 0, 0, 0]  # 获得最佳个体
    # "makespan" 是指完成整个生产作业或生产订单所需的总时间,通常以单位时间(例如小时或分钟)来衡量。
    best_makespan = fitness(best_job)  # 获得最佳个体的适应度值
    # 创建一个空列表来存储每代的适应度值
    fitness_history = [best_makespan]
    pop = get_init_pop(POP_SIZE)
    for _ in range(1, MAX_GEN + 1):
        if is_shuffle:
            random.shuffle(job_id)
        pop = selection(pop)  # 选择
        new_population = []
        while len(new_population) < POP_SIZE:
            parent1, parent2 = random.sample(pop, 2)  # 不重复抽样2个
            if random.random() < CROSSOVER_RATE:
                child1, child2 = crossover(parent1, parent2)  # 交叉
                new_population.extend([child1, child2])
            else:
                new_population.extend([parent1, parent2])
        pop = [mutation(job) if random.random() < MUTATION_RATE else job for job in new_population]
        best_gen_job = min(pop, key=lambda x: fitness(x))
        best_gen_makespan = fitness(best_gen_job)  # 每一次迭代获得最佳个体的适应度值
        if best_gen_makespan < best_makespan:  # 更新最小fitness值
            best_makespan = best_gen_makespan
            best_job = copy.deepcopy(best_gen_job)  # TODO: 不用deepcopy的话不会迭代,但是这里应该有更好的方法
            best_id = copy.deepcopy(job_id)
        fitness_history.append(best_makespan)  # 把本次迭代结果保存到fitness_history中(用于绘迭代曲线)
    # 绘制迭代曲线图
    plt.plot(range(MAX_GEN + 1), fitness_history)
    plt.xlabel('Generation')
    plt.ylabel('Fitness Value')
    plt.title('Genetic Algorithm Convergence')
    plt.show()
    return best_id, best_job, best_makespan
def plot_gantt(job_id, job):
    # 准备一系列颜色
    colors = ['blue', 'yellow', 'orange', 'green', 'palegoldenrod', 'purple', 'pink', 'Thistle', 'Magenta', 'SlateBlue',
              'RoyalBlue', 'Cyan', 'Aqua', 'floralwhite', 'ghostwhite', 'goldenrod', 'mediumslateblue', 'navajowhite',
              'moccasin', 'white', 'navy', 'sandybrown', 'moccasin']
    job_colors = random.sample(colors, len(job))
    # 计算每个工件的开始时间和结束时间
    start_time = [[] for _ in range(machine_num)]
    end_time = [[] for _ in range(machine_num)]
    id = [[] for _ in range(machine_num)]
    job_color = [[] for _ in range(machine_num)]
    for i in range(len(job)):
        if start_time[job[i]]:
            start_time[job[i]].append(max(end_time[job[i]][-1], arr_times[job_id[i]]))
            end_time[job[i]].append(start_time[job[i]][-1] + pro_times[job_id[i]])
        else:
            start_time[job[i]].append(arr_times[job_id[i]])
            end_time[job[i]].append(start_time[job[i]][-1] + pro_times[job_id[i]])
        id[job[i]].append(job_id[i])
        job_color[job[i]].append(job_colors[job_id[i]])
    # 创建图表和子图
    plt.figure(figsize=(12, 6))
    # 绘制工序的甘特图
    for i in range(len(start_time)):
        for j in range(len(start_time[i])):
            plt.barh(i, end_time[i][j] - start_time[i][j], height=0.5, left=start_time[i][j], color=job_color[i][j],
                     edgecolor='black')
            plt.text(x=(start_time[i][j] + end_time[i][j]) / 2, y=i, s=id[i][j], fontsize=14)
    # 设置纵坐标轴刻度为机器编号
    machines = [f'Machine {i}' for i in range(len(start_time))]
    plt.yticks(range(len(machines)), machines)
    # 设置横坐标轴刻度为时间
    # start = min([min(row) for row in start_time])
    start = 0
    end = max([max(row) for row in end_time])
    plt.xticks(range(start, end + 1))
    plt.xlabel('Time')
    # 图表样式设置
    plt.ylabel('Machines')
    plt.title('Gantt Chart')
    # plt.grid(axis='x')
    # 自动调整图表布局
    plt.tight_layout()
    # 显示图表
    plt.show()
if __name__ == '__main__':
    # 定义多机调度问题的工件和加工时间
    job_id =    [0, 1, 2, 3, 4, 5, 6, 7, 8]  # 工件编号
    pro_times = [4, 7, 6, 5, 8, 3, 5, 5, 10]  # 加工时间
    arr_times = [3, 2, 4, 5, 3, 2, 1, 8, 6]  # 到达时间
    deadlines = [10, 15, 30, 24, 14, 13, 20, 18, 10]  # 交货期
    machine_num = 3  # 3台完全相同的并行机,编号为0,1,2
    job_id, best_job, best_makespan = GA(True)
    print("最佳加工顺序:", job_id)
    print("最佳调度分配:", best_job)
    print("最小交货期延时时间:", best_makespan)
    plot_gantt(job_id, best_job)


目录
相关文章
|
1天前
|
机器学习/深度学习 算法 物联网
深入剖析操作系统调度算法
【7月更文挑战第13天】本文旨在探讨和比较不同的操作系统调度算法,并分析其对系统性能的影响。文章首先概述了调度算法的基本概念及其重要性,随后详细阐述了常见的调度算法类型,包括先来先服务、短作业优先、优先级调度、时间片轮转以及多级反馈队列等。通过对比不同算法的优缺点,文章进一步探讨了现代操作系统中调度算法的应用与挑战,以及如何根据实际需求选择合适的调度策略。最后,文章展望了操作系统调度算法的未来发展方向,特别是在云计算和物联网时代下的适应性与创新。
4 1
|
4天前
|
机器学习/深度学习 人工智能 分布式计算
算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化
机器学习中的超参数调优是提升模型性能的关键步骤,包括网格搜索、随机搜索、贝叶斯优化和遗传算法等方法。网格搜索通过穷举所有可能的超参数组合找到最优,但计算成本高;随机搜索则在预设范围内随机采样,降低计算成本;贝叶斯优化使用代理模型智能选择超参数,效率高且适应性强;遗传算法模拟生物进化,全局搜索能力强。此外,还有多目标优化、异步并行优化等高级技术,以及Hyperopt、Optuna等优化库来提升调优效率。实践中,应结合模型类型、数据规模和计算资源选择合适的调优策略。
8 0
算法金 | 最难的来了:超参数网格搜索、贝叶斯优化、遗传算法、模型特异化、Hyperopt、Optuna、多目标优化、异步并行优化
|
15天前
|
算法 调度 云计算
操作系统中的调度算法:从理论到实践
在计算机科学领域,操作系统的调度算法是决定任务执行顺序的关键。本文首先概述了调度算法的基本概念和重要性,随后深入探讨了几种主要的调度算法,包括先来先服务、短作业优先、轮转与优先级调度等。通过引用最新的科研数据和实验证据,文章揭示了不同调度算法的性能表现和适用场景。此外,本文还讨论了现代操作系统中调度算法面临的挑战和未来的发展方向,强调了在多核处理器和云计算环境下调度策略的复杂性。最后,通过案例分析,展示了如何在实际系统中应用这些理论知识,以及在设计高效调度系统时需要考虑的因素。
|
9天前
|
机器学习/深度学习 算法 数据挖掘
操作系统调度算法的演进与性能分析
随着计算机科学的发展,操作系统作为硬件与软件之间的桥梁,其调度算法对系统性能有着举足轻重的影响。本文将探讨操作系统中调度算法的演变,从早期的简单调度策略到现代复杂的多级反馈队列和实时调度机制,并结合最新研究和实验数据,深入分析不同调度算法对系统吞吐量、响应时间及资源利用率的影响。通过对调度算法性能的定量评估,本文旨在为系统设计者提供优化决策的理论依据,同时为未来调度算法的研究指明方向。
12 0
|
9天前
|
算法 调度
【重磅】“一招”解决智能算法中不满足“预期”的问题【以微电网优化调度为例】
摘要(Markdown格式): 在对微电网优化调度的模型复现中,发现智能算法(如改进粒子群优化)得出的结果有时不符合预期。例如,电网在低电价时段未满负荷购电,而高电价设备出力未相应降低,可能由于算法陷入局部最优或约束条件设置不当。为解决此问题,采用了梯级罚函数方法改进代码,以更好地满足预期的逻辑关系和优化目标。更新后的程序结果显示设备出力和电价成本的关系更符合预期,降低了运行成本。详细分析和改进后的程序结果图表可见相关链接。
|
16天前
|
算法 物联网 调度
操作系统调度算法的演进与性能评估
本文深入探讨了操作系统中进程调度算法的发展轨迹,从早期的先来先服务(FCFS)到现代的多级队列和反馈控制理论。通过引用实验数据、模拟结果和理论分析,文章揭示了不同调度策略如何影响系统性能,特别是在响应时间、吞吐量和公平性方面。同时,本文也讨论了在云计算和物联网等新兴领域,调度算法面临的挑战和未来的发展方向。
|
16天前
|
机器学习/深度学习 人工智能 算法
操作系统调度算法的演变与性能分析
操作系统作为计算机硬件和软件之间的桥梁,其调度算法的效率直接影响到系统的响应速度和资源利用率。本文将探讨从简单到复杂的各类调度算法,包括先来先服务、短作业优先、轮转法以及多级反馈队列等,通过数据分析揭示各算法的性能特点,并结合现代操作系统设计的需求,讨论未来调度算法的发展趋势。
|
16天前
|
机器学习/深度学习 算法 大数据
操作系统调度算法的演变与优化
在计算机科学领域中,操作系统的调度算法是核心的研究课题之一。本文深入探讨了操作系统调度算法的发展历程、当前挑战以及未来趋势。通过引用最新的科研数据和实验证据,本文旨在揭示调度算法如何适应现代计算需求的变化。我们将从理论到实践,详细分析不同调度算法的性能表现,并讨论如何利用这些算法来提升系统的整体效率和响应速度。
12 0
|
2天前
|
算法 数据挖掘
MATLAB数据分析、从算法到实现
MATLAB数据分析、从算法到实现
|
9天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。