智能体(AI Agent)开发实战之【LangChain】(一)接入大模型输出结果

简介: LangChain 是一个开源框架,专为构建与大语言模型(LLMs)相关的应用设计。通过集成多个 API、数据源和工具,助力开发者高效构建智能应用。本文介绍了 LangChain 的环境准备(如安装 LangChain、OpenAI 及国内 DeepSeek 等库)、代码实现(以国内开源大模型 Qwen 为例,展示接入及输出结果的全流程),以及核心参数配置说明。LangChain 的灵活性和强大功能使其成为开发对话式智能应用的理想选择。

LangChain 是一个强大的开源框架,专为构建与大语言模型(LLMs)相关的应用而设计。通过将多个 API、数据源和外部工具无缝集成,LangChain 能帮助开发者更高效地构建智能应用。
一、环境准备
安装LangChain,langChain-core等库,我安装时LangChain版本是:0.3.21,langChain-core版本是当时最新版本:0.3.48。因为一些常用的大模型都遵循 OpenAI API 规范,还需要安装OPENAI相关库。如果使用国内的大模型也要安装相应的库如:DeepSeek库。如以下相关截图:
image.png
image.png
image.png
二、编写代码接入开源大模型并输出结果
因相关原因,访问国外开源大模型有限制。我通过对比和实践,选择了国内的开源大模型Qwen并使用国内的一个平台API来实现接入大模型并输出结果。
1.导入必要的库和类

from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage, SystemMessage

2.配置ChatOpenAI实例

chat_model = ChatOpenAI(
    model = "Qwen/Qwen2.5-7B-Instruct",
    openai_api_key=DEEPSEEK_API_KEY,
    openai_api_base=DEEPSEEK_API_BASE,
    temperature=0.7, 
    max_tokens=500, 
    stream=False 
    )

3.构建消息列表

 messages = [
    SystemMessage(content="你是一个知识渊博的助手,能回答各种问题。"),
    HumanMessage(content="介绍一下长城")
]

4.调用大模型并获取返回结果

# 调用大模型
response = chat_model.invoke(messages)
# 输出模型的响应结果
print(response.content)

5.ChatOpenAI类的自定义配置参数说明
model_name:指定要使用的具体模型名称,例如ChatOpenAI中可以指定model_name="gpt - 3.5 - turbo"

temperature:控制生成文本的随机性,取值范围在 0 到 1 之间,值越大生成的文本越随机

max_tokens:限制生成文本的最大 token 数量

stream:如果设置为True(默认值是False),模型将以流式输出的方式返回结果,即边生成边返回,而不是等整个生成过程结束后再返回,适用于需要实时获取生成结果的场景。

6.运行代码输出结果
image.png
三、总结

LangChain 提供了丰富的接口用于和不同的大模型集成和交互,可帮助开发者轻松地构建出功能强大的对话式智能应用。

相关实践学习
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
4月前
|
人工智能 测试技术 API
构建AI智能体:二、DeepSeek的Ollama部署FastAPI封装调用
本文介绍如何通过Ollama本地部署DeepSeek大模型,结合FastAPI实现API接口调用。涵盖Ollama安装、路径迁移、模型下载运行及REST API封装全过程,助力快速构建可扩展的AI应用服务。
1265 6
|
4月前
|
人工智能 运维 安全
加速智能体开发:从 Serverless 运行时到 Serverless AI 运行时
在云计算与人工智能深度融合的背景下,Serverless 技术作为云原生架构的集大成者,正加速向 AI 原生架构演进。阿里云函数计算(FC)率先提出并实践“Serverless AI 运行时”概念,通过技术创新与生态联动,为智能体(Agent)开发提供高效、安全、低成本的基础设施支持。本文从技术演进路径、核心能力及未来展望三方面解析 Serverless AI 的突破性价值。
|
4月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1768 16
构建AI智能体:一、初识AI大模型与API调用
|
4月前
|
存储 机器学习/深度学习 人工智能
构建AI智能体:三、Prompt提示词工程:几句话让AI秒懂你心
本文深入浅出地讲解Prompt原理及其与大模型的关系,系统介绍Prompt的核心要素、编写原则与应用场景,帮助用户通过精准指令提升AI交互效率,释放大模型潜能。
794 5
|
4月前
|
机器学习/深度学习 人工智能 JSON
PHP从0到1实现 AI 智能体系统并且训练知识库资料
本文详解如何用PHP从0到1构建AI智能体,涵盖提示词设计、记忆管理、知识库集成与反馈优化四大核心训练维度,结合实战案例与系统架构,助你打造懂业务、会进化的专属AI助手。
462 6
|
Shell Android开发
Android系统 adb shell push/pull 禁止特定文件
Android系统 adb shell push/pull 禁止特定文件
1492 1
|
Android开发 Python
Python封装ADB获取Android设备wifi地址的方法
Python封装ADB获取Android设备wifi地址的方法
408 0
|
5月前
|
开发工具 Android开发
X Android SDK file not found: adb.安卓开发常见问题-Android SDK 缺少 `adb`(Android Debug Bridge)-优雅草卓伊凡
X Android SDK file not found: adb.安卓开发常见问题-Android SDK 缺少 `adb`(Android Debug Bridge)-优雅草卓伊凡
662 11
X Android SDK file not found: adb.安卓开发常见问题-Android SDK 缺少 `adb`(Android Debug Bridge)-优雅草卓伊凡

热门文章

最新文章