开源大数据平台 E-MapReduce
阿里云EMR是云原生开源大数据平台,为客户提供简单易集成的Hadoop、Hive、Spark、Flink、Presto、ClickHouse、StarRocks、Delta、Hudi等开源大数据计算和存储引擎,计算资源可以根据业务的需要调整。EMR可以部署在阿里云公有云的ECS和ACK平台。

(第二部分)从Python 到Java ,Pyboot加速大数据和AI的融合
Python 代表机器学习生态,而以 Hadoop/Spark 为核心的开源大数据则以 Java 为主。前者拥有数不清的算法库和程序,后者承载着海量数据和大量的企业应用。除了 SQL 这个标准方式和各种五花八门的协议接口,还有没有更高效的一手数据通道,将两个生态对接起来,乃至深度融合?Pyboot 是我们在这个方向上的探索。有兴趣的同学欢迎现场观摩演示和技术交流。嘉宾介绍郑锴,花名铁杰,阿里巴巴高级技术专家,Apache Hadoop PMC,Apache Kerby 创立者。深耕分布式系统开发和开源大数据多年,目前专注于在阿里云上提供更好用更有弹性的 Hadoop/Spark 大数据平台;孙大鹏,花名诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作;

Tablestore结合Spark的云上流批一体大数据架构
传统Lambda架构组件多运维复杂,如何使用一套存储和一套计算来实现流批架构充分享受技术红利?以Delta Lake为代表的新型数据湖方案越来越流行,传统的Lambda架构如何向数据湖架构进行扩展?以及结构化数据结合Delta Lake的最佳解决方案是什么。本次分享将会结合理论讲解和实际场景为您一一解答。讲师介绍王卓然, 花名琸然 阿里云存储服务技术专家

(第一部分)从Python 到Java ,Pyboot加速大数据和AI的融合
Python 代表机器学习生态,而以 Hadoop/Spark 为核心的开源大数据则以 Java 为主。前者拥有数不清的算法库和程序,后者承载着海量数据和大量的企业应用。除了 SQL 这个标准方式和各种五花八门的协议接口,还有没有更高效的一手数据通道,将两个生态对接起来,乃至深度融合?Pyboot 是我们在这个方向上的探索。有兴趣的同学欢迎现场观摩演示和技术交流。嘉宾介绍郑锴,花名铁杰,阿里巴巴高级技术专家,Apache Hadoop PMC,Apache Kerby 创立者。深耕分布式系统开发和开源大数据多年,目前专注于在阿里云上提供更好用更有弹性的 Hadoop/Spark 大数据平台;孙大鹏,花名诚历,阿里巴巴计算平台事业部 EMR 技术专家,Apache Sentry PMC,Apache Commons Committer,目前从事开源大数据存储和优化方面的工作;

云上大数据的存储方案设计和选择
上云拐点已来,开源大数据上云是业界共识。如何满足在云上低成本存储海量数据的同时又实现高效率弹性计算的潜在需求?放眼业界,都有哪些成熟存储方案和选择?各自适用的存储和计算场景是什么?背后的技术关键和考虑因素都有哪些?欢迎大数据技术爱好者面对面交流和探讨!嘉宾介绍姚舜扬,花名辰山,阿里巴巴计算平台事业部 EMR 高级开发工程师,目前从事大数据存储方面的开发和优化工作;苏昆辉,花名抚月,阿里巴巴计算平台事业部 EMR 高级工程师, 曾就职于华为、网易. Apache HDFS committer. 对Hadoop、HBase等有深入研究, 对分布式存储、高性能优化有丰富经验. 目前从事大数据云化相关工作.

使用分布式自动机器学习进行时间序列分析
对于时间序列预测搭建机器学习应用的过程非常繁琐且需要大量经验。为了提供一个简单易用的时间序列预测工具,我们将自动机器学习应用于时间序列预测,将特征生成,模型选择和超参数调优等过程实现自动化。我们的工具基于Ray(UC Berkeley RISELab开源的针对高级AI 应用的分布式框架,并作为Analytics zoo(由intel开源的统一的大数据分析和人工智能平台)的一部分功能提供给用户。嘉宾介绍喻杉,Intel大数据分析团队软件工程师。她目前专注于在analytics-zoo大数据和人工智能平台上开发自动机器学习组件。在加入intel前,她在浙江大学获得了学士和硕士学位。

基于 Spark 打造高效云原生数据分析引擎
由阿里巴巴 EMR 团队提交的 TPC-DS 成绩在九月份的榜单中取得了排名第一的成绩。这个成绩背后离不开 EMR 团队对 Spark 执行引擎持续不断的优化。本次分享将选取一些有代表性的优化点,深入到技术细节做详细介绍,包括但不限于动态过滤、CBO增强、TopK排序等等。嘉宾介绍辛庸,阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。

Spark Codegen浅析
Codegen是Spark Runtime优化性能的关键技术,核心在于动态生成java代码、即时compile和加载,把解释执行转化为编译执行。Spark Codegen分为Expression级别和WholeStage级别,分别针对表达式计算和全Stage计算做代码生成,都取得了数量级的性能提升。本文浅析Spark Codegen技术原理。
Spark Codegen浅析
Codegen是Spark Runtime优化性能的关键技术,核心在于动态生成java代码、即时compile和加载,把解释执行转化为编译执行。Spark Codegen分为Expression级别和WholeStage级别,分别针对表达式计算和全Stage计算做代码生成,都取得了数量级的性能提升。本文浅析Spark Codegen技术原理。
Spark Operator浅析
Spark Operator浅析 本文介绍Spark Operator的设计和实现相关的内容. Spark运行时架构 经过近几年的高速发展,分布式计算框架的架构逐渐趋同. 资源管理模块作为其中最通用的模块逐渐与框架解耦,独立成通用的组件.

Spark on Kubernetes & YARN
以Kubernetes为代表的云原生技术越来越流行起来,spark是如何跑在Kubernetes之上来享受云原生技术的红利?Spark跑在Kubernetes之上和跑在Hadoop YARN上又有什么区别?以及Kubernetes 和YARN的差异点是什么。讲师介绍何剑,阿里巴巴高级技术专家,专注于Kubernetes容器云和大数据底层调度以及基础架构,负责阿里巴巴容器平台在线服务和离线计算任务混部。此前就职于Hortonworks, 是Hadoop 社区Committer和PMC成员

11月14日Spark社区直播【 Spark on Kubernetes & YARN】
本次直播将讨论:以Kubernetes为代表的云原生技术越来越流行起来,spark是如何跑在Kubernetes之上来享受云原生技术的红利?Spark跑在Kubernetes之上和跑在Hadoop YARN上又有什么区别?以及Kubernetes 和YARN的差异点是什么。

11月14日Spark社区直播【 Spark on Kubernetes & YARN】
本次直播将讨论:以Kubernetes为代表的云原生技术越来越流行起来,spark是如何跑在Kubernetes之上来享受云原生技术的红利? Spark跑在Kubernetes之上和跑在Hadoop YARN上又有什么区别?以及Kubernetes 和YARN的差异点是什么。

阿里云大数据+AI技术沙龙上海站
EMR 团队在国内运营最大的 Spark 社区,为了更好地传播和分享业界最新技术和最佳实践,现在联合Intel及开源社区同行,打造一个纯粹的技术交流线下沙龙《大数据 + AI》,定期为大家做公益分享。首站上海开站,请猛戳链接报名!https://www.slidestalk.com/m/61

阿里云大数据+AI技术沙龙上海站
EMR 团队在国内运营最大的 Spark 社区,为了更好地传播和分享业界最新技术和最佳实践,现在联合Intel及开源社区同行,打造一个纯粹的技术交流线下沙龙《大数据 + AI》,定期为大家做公益分享。首站上海开站,请猛戳链接报名!https://www.slidestalk.com/m/61

EMR 打造高效云原生数据分析引擎
EMR-Jindo是EMR推出的云原生 OLAP 引擎。凭借该引擎,EMR成为第一个云上TPC-DS成绩提交者。经过持续不断地内核优化,目前基于最新 EMR-Jindo 引擎的 TPC-DS 成绩又有了大幅提高,达到了3615071,成本降低到 0.76 CNY。在2019杭州云栖大会大数据技术专场,阿里云阿里巴巴计算平台事业部 EMR 技术专家辛庸向大家分享了如何基于开源体系如何打造云上数据分析平台E-MarReduce(EMR)、EMR-Jindo 引擎背后的相关技术以及以 EMR-Jindo 为核心的云上大数据架构方案。

Spark Relational Cache实现亚秒级响应的交互式分析
阿里云E-MapReduce (EMR) 是构建在阿里云云服务器 ECS 上的开源 Hadoop、Spark、HBase、Hive、Flink 生态大数据 PaaS 产品。提供用户在云上使用开源技术建设数据仓库、离线批处理、在线流式处理、即时查询、机器学习等场景下的大数据解决方案。在2019杭州云栖大会大数据生态专场上,阿里巴巴技术专家王道远为大家分享了阿里云EMR的Spark Relational Cache实现亚秒级响应的交互式分析。

基于 Spark 和 TensorFlow 的机器学习实践
大数据以及计算能力的提升,使得AI技术有了突飞猛进的发展。在大数据和AI技术的热潮下,在2019杭州云栖大会机器学习技术专场,阿里云高级技术专家吴威和阿里云技术专家江宇向大家分享了EMR E-Learning平台和平台上新开发的核心特性TensorFlow on Spark。
如何在Spark中实现Count Distinct重聚合
背景 Count Distinct是SQL查询中经常使用的聚合统计方式,用于计算非重复结果的数目。由于需要去除重复结果,Count Distinct的计算通常非常耗时。为了支持更快速的非重复结果统计Spark还基于Hyperloglog实现了Approximate Count Distinct,用于统计非重复结果的近似值,支持。

JindoFS: 云上大数据的高性能数据湖存储方案
JindoFS 是EMR打造的高性能大数据存储服务,可以为不同的计算引擎提供不同的存储服务,可以根据应用的场景来选择不同的存储模式。在2019杭州云栖大会大数据生态专场,阿里巴巴计算平台事业部EMR团队技术专家殳鑫鑫和Intel大数据团队软件开发经理徐铖共同向大家分享了云上大数据的高性能数据湖存储方案JindoFS的产生背景、架构以及与Intel DCPM的性能评测。

开源生态的新发展:Apache Spark 3.0、Koala和Delta Lake
Hadoop开源生态Spark已经发展三年有余,今年迎来了Spark 3.0。在2019杭州云栖大会大数据&AI峰会上,Databricks研发总监李潇为大家分享了Spark 3.0版本的新特性,以及其在数据工程以及数据科学方面带来的新技术。

助力云上开源生态 - 阿里云开源大数据平台的发展
阿里云E-MapReduce (EMR) 是构建在阿里云云服务器 ECS 上的开源 Hadoop、Spark、HBase、Hive、Flink 生态大数据 PaaS 产品。提供用户在云上使用开源技术建设数据仓库、离线批处理、在线流式处理、即时查询、机器学习等场景下的大数据解决方案。在2019杭州云栖大会大数据生态专场上,阿里巴巴高级产品专家夏立为大家分享了阿里云EMR如何助力云上开源生态。

E-MapReduce 4.0产品新特性
E-MapReduce是运行在阿里云平台上的一大数据处理的系统解决方案。在2019年10月,阿里巴巴将发布EMR4.0版本。本篇介绍EMR4.0的新特性,包括在EMR基础能力,技术栈,生态集成和数据迁移等方面的升级,EMR4.0为用户提供更高的计算性能和更低的产品价格,将技术的红利让给用户。

5分钟迅速搭建云上Lambda大数据分析架构
主要介绍基于 Tablestore 的数据变更实时捕获订阅能力,实现云上Lambda 架构的轻量化实现数据的实时和离线处理。演示模拟了一个电商订单场景,通过流计算实现订单大屏的场景,做到海量订单实时注入的同时,进行10s的订单统计聚合以及交易金额统计并做实时的大屏幕展示

使用Spark Streaming SQL进行PV/UV统计
PV/UV统计是流式分析一个常见的场景。通过PV可以对访问的网站做流量或热点分析,例如广告主可以通过PV值预估投放广告网页所带来的流量以及广告收入。另外一些场景需要对访问的用户作分析,比如分析用户的网页点击行为,此时就需要对UV做统计。
使用Spark Streaming SQL进行PV/UV统计
PV/UV统计是流式分析一个常见的场景。通过PV可以对访问的网站做流量或热点分析,例如广告主可以通过PV值预估投放广告网页所带来的流量以及广告收入。另外一些场景需要对访问的用户作分析,比如分析用户的网页点击行为,此时就需要对UV做统计。

【Spark Relational Cache实现亚秒级响应的交互式分析】
2019杭州云栖大会大数据生态专场中的分享《Spark Relational Cache实现亚秒级响应的交互式分析》Apache Spark被广泛用于超大规模的数据分析处理,在交互式分析等时间敏感的场景中,超大规模数据量的处理时间可能无法满足用户快速响应的需求。通过数据的预组织和预计算,将频繁访问的数据和计算提前执行并保存在Relational Cache中,优化后续特定模式的查询,可以显著提高查询速度,实现亚秒级的响应。本议题主要介绍Spark Relational Cache的实现原理和使用场景。主讲人王道远(健身),阿里云EMR技术专家,Apache Spark活跃贡献者,主要关注大数据计算优化相关工作。

【基于Spark与TensorFlow的机器学习实践】
Apache Spark是目前最火热的计算框架,而TensorFlow是目前最火热的机器学习框架,当他们2个碰撞到一起的时候,也会产生巨大的能量。本议题会介绍EMR和PAI在这个上面的实践。主讲人吴威(无谓), 阿里巴巴高级技术专家,2008年加入阿里巴巴集团,先后在B2B和阿里云工作,一直从事大数据和分布式计算相关研究,作为主要开发和运维人员经历了阿里内部大数据集群的上线和发展壮大,现在阿里云EMR团队,负责Spark、Hadoop等计算引擎研发。江宇,阿里云EMR技术专家。从事Hadoop内核开发,目前专注于机器学习、深度学习大数据平台的建设

【云上大数据的一种高性能数据湖存储方案】
大数据上云是业界普遍共识,存储和计算分离的趋势日益显著,如何为云上蓬勃发展的大数据处理和分析引擎提供坚实的存储基础?这个 session 会主要讨论 EMR 技术团队重磅推出的一种新型混合存储解决方案,该方案基于云平台和云存储,面向新的存储硬件和计算发展趋势,为 EMR 弹性计算量身打造,在成本,弹性和性能上追求极佳平衡。技术上是如何实现的?性能如何?覆盖了哪些典型场景,最佳实践是什么?敬请期待!主讲人殳鑫鑫(辰石),阿里巴巴计算平台事业部EMR团队技术专家,目前从事大数据存储以及Spark相关方面的工作。徐铖, Intel大数据团队软件开发经理

【EMR打造高效云原生数据分析引擎】
EMR-Jindo 是 EMR 推出的云原生 OLAP 引擎。凭借该引擎,EMR 成为第一个云上 TPC-DS 成绩提交者。经过持续不断地内核优化,目前基于最新 EMR-Jindo 引擎的 TPC-DS 成绩又有了大幅提高,达到了3615071,成本降低到 0.76 CNY。本次分享将介绍 EMR-Jindo 引擎背后的相关技术以及以 EMR-Jindo 为核心的云上大数据架构方案。主讲人辛现银(辛庸),阿里巴巴计算平台事业部 EMR 技术专家。Apache Hadoop,Apache Spark contributor。对 Hadoop、Spark、Hive、Druid 等大数据组件有深入研究。目前从事大数据云化相关工作,专注于计算引擎、存储结构、数据库事务等内容。

【助力云上开源生态 - 阿里云开源大数据平台的发展】
介绍阿里云上开源生态的发展,阿里云如何更好的支持和融合开源生态,以及未来的发展。主讲人夏立,花名雷飙,阿里巴巴计算平台EMR高级产品专家,2014年开始接触大数据,历经阿里内部的大数据发展,目前在阿里云上负责开源的大数据平台EMR产品,构建云上的开源生态。

【New Developments in the Open Source Ecosystem: Apache Spark 3.0 and Koalas】
Apache Spark 3.0 and Koalas的最新进展主讲人李潇,Databricks Spark 研发总监,管理一跨国团队,专注于 Apache Spark 和 Databricks Runtime 的开发和建设。他是 Apache Spark 项目管理委员会成员。本科毕业于南京理工大学,后在佛罗里达大学(University of Florida)获计算机博士学位, 曾就职于 IBM,获发明大师称号(Master Inventor),在数据处理领域发表专利十余篇。(Github: gatorsmile)

10月17日Spark社区直播【Tablestore Spark Streaming Connector -- 海量结构化数据的实时计算和处理】
本次直播我们邀请了Tablestore存储服务技术专家 朱晓然 ,为大家详细介绍如何基于Tablestore的CDC技术,将大表内实时数据更新对接Spark Streaming来实现数据的实时计算和处理。

Tablestore Spark Streaming Connector -- 海量结构化数据的实时计算和处理
Tablestore是阿里云自研的云原生结构化大数据存储服务,本议题会详细介绍如何基于Tablestore的CDC技术,将大表内实时数据更新对接Spark Streaming来实现数据的实时计算和处理。最新版本的Connector会随着EMR下个版本的SDK一起开源,场景环节会结合阿里内部的业务介绍用户如何结合Tablestore和Spark来实现实时数据处理。讲师介绍朱晓然 ,Tablestore存储服务技术专家

10月17日Spark社区直播【Tablestore Spark Streaming Connector -- 海量结构化数据的实时计算和处理】
本次直播我们邀请了Tablestore存储服务技术专家 朱晓然 ,为大家详细介绍如何基于Tablestore的CDC技术,将大表内实时数据更新对接Spark Streaming来实现数据的实时计算和处理。

【译】Delta Lake 0.4.0 新特性演示:使用 Python API 就地转换与处理 Delta Lake 表
本文以案例演示在最新的 Delta Lake 0.4.0 中,如何转换 Delta Lake 表,使用全新的 Python API 执行 upsert 与删除数据,用时间旅行 (time travel) 查询数据的旧版本,以及 vacuum 语句清理旧版本。

Apache Spark中国技术交流社区历次直播回顾(持续更新)
Apache Spark中国技术交流社区,由阿里巴巴开源大数据技术团队成立,持续输出spark相关技术直播、原创文章、精品翻译,钉钉群内千人交流学习,欢迎加入。钉钉入群链接 https://qr.dingtalk.com/action/joingroup?code=v1,k1,jmHATP9Tk+okK7QZ5sw2oWSNLhkt2lCRvfHRdW7XhUQ=&_dt_no_comment=1&origin=11 更多视频和ppt资料请入群获得。

2019杭州云栖大会回顾之Spark Relational Cache实现亚秒级响应的交互式分析
本文来自2019杭州云栖大会大数据生态专场中的分享《Spark Relational Cache实现亚秒级响应的交互式分析》

JindoFS概述:云原生的大数据计算存储分离方案
JindoFS 是一套新的云原生的数据湖解决方案。在 JindoFS 之前,云上客户主要使用 HDFS 和 OSS/S3 作为大数据存储。HDFS 是 Hadoop 原生的存储系统,10 年来,HDFS 已经成为大数据生态的存储标准,但是我们也可以看到 HDFS 虽然不断优化,但是 JVM 的瓶颈也始终无法突破。

Apache Flink : Checkpoint 原理剖析与应用实践
本文将分享 Flink 中 Checkpoint 的应用实践,包括四个部分,分别是 Checkpoint 与 state 的关系、什么是 state、如何在 Flink 中使用 state 和 Checkpoint 的执行机制

太难了!我耗费心力终于规划出了一张云栖大会日程表
十年前,参加云栖大会还只是程序员的杭州朝圣之旅,而如今,它依然成了透视和分析云计算产业和窥见数字经济的窗口。一切你想看见的、期待看见的,甚至未曾预见的,都会在未来的三天中扑面而来。
实时 OLAP 系统 Druid
整体来看,Druid 算是一个优秀的实时 OLAP 系统,虽然有一些地方设计的并不是尽善尽美,但是瑕不掩瑜。这篇文章简单介绍一些 Druid 的整体情况,希望可以给使用 Druid 的同学做一些参考。下一篇文章将会介绍一下我们过去一年基于 Druid 的实践情况以及一些踩过的坑。

实时 OLAP 系统 Druid
整体来看,Druid 算是一个优秀的实时 OLAP 系统,虽然有一些地方设计的并不是尽善尽美,但是瑕不掩瑜。这篇文章简单介绍一些 Druid 的整体情况,希望可以给使用 Druid 的同学做一些参考。下一篇文章将会介绍一下我们过去一年基于 Druid 的实践情况以及一些踩过的坑。

Apache Spark中国技术交流社区历次直播回顾(持续更新)
Apache Spark中国技术交流社区,由阿里巴巴开源大数据技术团队成立,持续输出spark相关技术直播、原创文章、精品翻译,钉钉群内千人交流学习,欢迎加入。钉钉入群 https://qr.dingtalk.com/action/joingroup?code=v1,k1,jmHATP9Tk+okK7QZ5sw2oWSNLhkt2lCRvfHRdW7XhUQ=&_dt_no_comment=1&origin=11 更多视频和ppt资料请入群获得。

7月24日阿里云峰会.上海 开发者大会回看
阿里云峰会.上海 开发者大会将在上海世博中心盛大启程,与未来世界的开发者们分享开源大数据、IT基础设施云化、数据库、云原生、物联网等领域的技术干货,共同探讨前沿科技趋势,分析阿里云在一线生产场景的最佳实践,携手合作伙伴及广大开发者们共建云上开发新时代,让我们一起code up!

【译】Hadoop发生了什么?我们该如何做?
许多组织都关注Hadoop生态系统的最新发展,并承受着展示数据湖价值的压力。对于企业来说,至关重要的是确定如何在Hadoop失败后成功地实现应用程序的现代化,以及实现这一目标的最佳策略。Hadoop曾经是最被炒作的技术,如今属于人工智能。当心炒作周期,有一天你可能不得不为它的影响负责。
【译】Hadoop发生了什么?我们该如何做?
原文:https://insidebigdata.com/2019/08/10/what-happened-to-hadoop-and-where-do-we-go-from-here/ Apache Hadoop出现在IT领域是在2006年,它可以支持使用廉价的商用硬件来存储海量数据。