Spark Codegen浅析

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: Codegen是Spark Runtime优化性能的关键技术,核心在于动态生成java代码、即时compile和加载,把解释执行转化为编译执行。Spark Codegen分为Expression级别和WholeStage级别,分别针对表达式计算和全Stage计算做代码生成,都取得了数量级的性能提升。本文浅析Spark Codegen技术原理。

作者:周克勇,花名一锤,阿里巴巴计算平台事业部EMR团队技术专家,大数据领域技术爱好者,对Spark有浓厚兴趣和一定的了解,目前主要专注于EMR产品中开源计算引擎的优化工作。


背景介绍

SparkSQL的优越性能背后有两大技术支柱:Optimizer和Runtime。前者致力于寻找最优的执行计划,后者则致力于把既定的执行计划尽可能快地执行出来。Runtime的多种优化可概括为两个层面:
1. 全局优化。从提升全局资源利用率、消除数据倾斜、降低IO等角度做优化,包括自适应执行(Adaptive Execution), Shuffle Removal等。
2. 局部优化。优化具体的Task的执行效率,主要依赖Codegen技术,具体包括Expression级别和WholeStage级别的Codegen。
本文介绍Spark Codegen的技术原理。

Case Study

本节通过两个具体case介绍Codegen的做法。

Expression级别

考虑下面的表达式计算:x + (1 + 2),用scala代码表达如下:

Add(Attribute(x), Add(Literal(1), Literal(2)))

语法树如下:


Expression

递归求值这棵语法树的常规代码如下:

tree.transformUp {
  case Attribute(idx) => Literal(row.getValue(idx))
  case Add(Literal(c1),Literal(c2)) => Literal(c1+c2)
  case Literal(c) => Literal(c)
}

执行上述代码需要做很多类型匹配、虚函数调用、对象创建等额外逻辑,这些overhead远超对表达式求值本身。
为了消除这些overhead,Spark Codegen直接拼成求值表达式的java代码并进行即时编译。具体分为三个步骤:
1. 代码生成。根据语法树生成java代码,封装在wrapper类中:

... // class wrapper
row.getValue(idx) + (1 + 2)
... // class wrapper

2. 即时编译。使用Janino框架把生成代码编译成class文件。
3. 加载执行。最后加载并执行。
优化前后性能有数量级的提升。


Expression

WholeStage级别

考虑如下的sql语句:

select count(*) from store_sales
where ss_item_sk=1000;

生成的物理执行计划如下:


Expression

执行该计划的常规做法是使用火山模型(vocano model),每个Operator都继承了Iterator接口,其next()方法首先驱动上游执行拿到输入,然后执行自己的逻辑。代码示例如下:

class Agg extends Iterator[Row] {
  def doAgg() {
    while (child.hasNext()) {
      val row = child.next();
      // do aggregation
      ...
    }
  }
  def next(): Row {
    if (!doneAgg) {
      doAgg();
    }
    return aggIter.next();
  }
}


class Filter extends Iterator[Row] {
  def next(): Row {
    var current = child.next()
    while (current != null && !predicate(current)) {
      current = child.next()
    }
    return current;
  }
}

从上述代码可知,火山模型会有大量类型转换和虚函数调用。虚函数调用会导致CPU分支预测失败,从而导致严重的性能回退。
为了消除这些overhead,Spark WholestageCodegen会为该物理计划生成类型确定的java代码,然后类似Expression的做法即时编译和加载执行。本例生成的java代码示例如下(非真实代码,真实代码片段见后文):

var count = 0
for (ss_item_sk in store_sales) {
  if (ss_item_sk == 1000) {
    count += 1
  }
}

优化前后性能提升数据如下:


Expression

Spark Codegen框架

Spark Codegen框架有三个核心组成部分
1. 核心接口/类
2. CodegenContext
3. Produce-Consume Pattern

接下来详细介绍。

接口/类

四个核心接口:
1. CodegenSupport(接口)
实现该接口的Operator可以将自己的逻辑拼成java代码。重要方法:

produce() // 输出本节点产出Row的java代码
consume() // 输出本节点消费上游节点输入的Row的java代码

实现类包括但不限于: ProjectExec, FilterExec, HashAggregateExec, SortMergeJoinExec。
2. WholeStageCodegenExec(类)
CodegenSupport的实现类之一,Stage内部所有相邻的实现CodegenSupport接口的Operator的融合,产出的代码把所有被融合的Operator的执行逻辑封装到一个Wrapper类中,该Wrapper类作为Janino即时compile的入参。
3. InputAdapter(类)
CodegenSupport的实现类之一,胶水类,用来连接WholeStageCodegenExec节点和未实现CodegenSupport的上游节点。
4. BufferedRowIterator(接口)
WholeStageCodegenExec生成的java代码的父类,重要方法:

public InternalRow next() // 返回下一条Row
public void append(InternalRow row) // append一条Row

CodegenContext

管理生成代码的核心类。主要涵盖以下功能:

1.命名管理。保证同一Scope内无变量名冲突。
2.变量管理。维护类变量,判断变量类型(应该声明为独立变量还是压缩到类型数组中),维护变量初始化逻辑等。
3.方法管理。维护类方法。
4.内部类管理。维护内部类。
5.相同表达式管理。维护相同子表达式,避免重复计算。
6.size管理。避免方法、类size过大,避免类变量数过多,进行比较拆分。如把表达式块拆分成多个函数;把函数、变量定义拆分到多个内部类。
7.依赖管理。维护该类依赖的外部对象,如Broadcast对象、工具对象、度量对象等。
8.通用模板管理。提供通用代码模板,如genComp, nullSafeExec等。

Produce-Consume Pattern

相邻Operator通过Produce-Consume模式生成代码。
Produce生成整体处理的框架代码,例如aggregation生成的代码框架如下:

if (!initialized) {
  # create a hash map, then build the aggregation hash map
  # call child.produce()
  initialized = true;
}
while (hashmap.hasNext()) {
  row = hashmap.next();
  # build the aggregation results
  # create variables for results
  # call consume(), which will call parent.doConsume()
   if (shouldStop()) return;
}

Consume生成当前节点处理上游输入的Row的逻辑。如Filter生成代码如下:

# code to evaluate the predicate expression, result is isNull1 and value2
if (!isNull1 && value2) {
  # call consume(), which will call parent.doConsume()
}

下图比较清晰地展示了WholestageCodegen生成java代码的call graph:


Expression

Case Study的示例,生成的真实代码如下:

== Subtree 1 / 2 ==
*(2) HashAggregate(keys=[], functions=[count(1)], output=[count(1)#326L])
+- Exchange SinglePartition
   +- *(1) HashAggregate(keys=[], functions=[partial_count(1)], output=[count#329L])
      +- *(1) Project
         +- *(1) Filter (isnotnull(ss_item_sk#13L) && (ss_item_sk#13L = 1000))
            +- *(1) FileScan parquet [ss_item_sk#13L] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/home/admin/zhoukeyong/workspace/tpc/tpcds/data/parquet/10/store_sales/par..., PartitionFilters: [], PushedFilters: [IsNotNull(ss_item_sk), EqualTo(ss_item_sk,1000)], ReadSchema: struct<ss_item_sk:bigint>

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage2(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=2
/* 006 */ final class GeneratedIteratorForCodegenStage2 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean agg_initAgg_0;
/* 010 */   private boolean agg_bufIsNull_0;
/* 011 */   private long agg_bufValue_0;
/* 012 */   private scala.collection.Iterator inputadapter_input_0;
/* 013 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] agg_mutableStateArray_0 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[1];
/* 014 */
/* 015 */   public GeneratedIteratorForCodegenStage2(Object[] references) {
/* 016 */     this.references = references;
/* 017 */   }
/* 018 */
/* 019 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 020 */     partitionIndex = index;
/* 021 */     this.inputs = inputs;
/* 022 */
/* 023 */     inputadapter_input_0 = inputs[0];
/* 024 */     agg_mutableStateArray_0[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 025 */
/* 026 */   }
/* 027 */
/* 028 */   private void agg_doAggregateWithoutKey_0() throws java.io.IOException {
/* 029 */     // initialize aggregation buffer
/* 030 */     agg_bufIsNull_0 = false;
/* 031 */     agg_bufValue_0 = 0L;
/* 032 */
/* 033 */     while (inputadapter_input_0.hasNext() && !stopEarly()) {
/* 034 */       InternalRow inputadapter_row_0 = (InternalRow) inputadapter_input_0.next();
/* 035 */       long inputadapter_value_0 = inputadapter_row_0.getLong(0);
/* 036 */
/* 037 */       agg_doConsume_0(inputadapter_row_0, inputadapter_value_0);
/* 038 */       if (shouldStop()) return;
/* 039 */     }
/* 040 */
/* 041 */   }
/* 042 */
/* 043 */   private void agg_doConsume_0(InternalRow inputadapter_row_0, long agg_expr_0_0) throws java.io.IOException {
/* 044 */     // do aggregate
/* 045 */     // common sub-expressions
/* 046 */
/* 047 */     // evaluate aggregate function
/* 048 */     long agg_value_3 = -1L;
/* 049 */     agg_value_3 = agg_bufValue_0 + agg_expr_0_0;
/* 050 */     // update aggregation buffer
/* 051 */     agg_bufIsNull_0 = false;
/* 052 */     agg_bufValue_0 = agg_value_3;
/* 053 */
/* 054 */   }
/* 055 */
/* 056 */   protected void processNext() throws java.io.IOException {
/* 057 */     while (!agg_initAgg_0) {
/* 058 */       agg_initAgg_0 = true;
/* 059 */       long agg_beforeAgg_0 = System.nanoTime();
/* 060 */       agg_doAggregateWithoutKey_0();
/* 061 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);
/* 062 */
/* 063 */       // output the result
/* 064 */
/* 065 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(1);
/* 066 */       agg_mutableStateArray_0[0].reset();
/* 067 */
/* 068 */       agg_mutableStateArray_0[0].zeroOutNullBytes();
/* 069 */
/* 070 */       agg_mutableStateArray_0[0].write(0, agg_bufValue_0);
/* 071 */       append((agg_mutableStateArray_0[0].getRow()));
/* 072 */     }
/* 073 */   }
/* 074 */
/* 075 */ }

== Subtree 2 / 2 ==
*(1) HashAggregate(keys=[], functions=[partial_count(1)], output=[count#329L])
+- *(1) Project
   +- *(1) Filter (isnotnull(ss_item_sk#13L) && (ss_item_sk#13L = 1000))
      +- *(1) FileScan parquet [ss_item_sk#13L] Batched: true, Format: Parquet, Location: InMemoryFileIndex[file:/home/admin/zhoukeyong/workspace/tpc/tpcds/data/parquet/10/store_sales/par..., PartitionFilters: [], PushedFilters: [IsNotNull(ss_item_sk), EqualTo(ss_item_sk,1000)], ReadSchema: struct<ss_item_sk:bigint>

Generated code:
/* 001 */ public Object generate(Object[] references) {
/* 002 */   return new GeneratedIteratorForCodegenStage1(references);
/* 003 */ }
/* 004 */
/* 005 */ // codegenStageId=1
/* 006 */ final class GeneratedIteratorForCodegenStage1 extends org.apache.spark.sql.execution.BufferedRowIterator {
/* 007 */   private Object[] references;
/* 008 */   private scala.collection.Iterator[] inputs;
/* 009 */   private boolean agg_initAgg_0;
/* 010 */   private boolean agg_bufIsNull_0;
/* 011 */   private long agg_bufValue_0;
/* 012 */   private long scan_scanTime_0;
/* 013 */   private boolean outputMetaColumns;
/* 014 */   private int scan_batchIdx_0;
/* 015 */   private org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[] scan_mutableStateArray_3 = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter[3];
/* 016 */   private org.apache.spark.sql.vectorized.ColumnarBatch[] scan_mutableStateArray_1 = new org.apache.spark.sql.vectorized.ColumnarBatch[1];
/* 017 */   private scala.collection.Iterator[] scan_mutableStateArray_0 = new scala.collection.Iterator[1];
/* 018 */   private org.apache.spark.sql.execution.vectorized.OffHeapColumnVector[] scan_mutableStateArray_2 = new org.apache.spark.sql.execution.vectorized.OffHeapColumnVector[1];
/* 019 */
/* 020 */   public GeneratedIteratorForCodegenStage1(Object[] references) {
/* 021 */     this.references = references;
/* 022 */   }
/* 023 */
/* 024 */   public void init(int index, scala.collection.Iterator[] inputs) {
/* 025 */     partitionIndex = index;
/* 026 */     this.inputs = inputs;
/* 027 */
/* 028 */     scan_mutableStateArray_0[0] = inputs[0];
/* 029 */     outputMetaColumns = false;
/* 030 */     scan_mutableStateArray_3[0] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 031 */     scan_mutableStateArray_3[1] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 032 */     scan_mutableStateArray_3[2] = new org.apache.spark.sql.catalyst.expressions.codegen.UnsafeRowWriter(1, 0);
/* 033 */
/* 034 */   }
/* 035 */
/* 036 */   private void agg_doAggregateWithoutKey_0() throws java.io.IOException {
/* 037 */     // initialize aggregation buffer
/* 038 */     agg_bufIsNull_0 = false;
/* 039 */     agg_bufValue_0 = 0L;
/* 040 */
/* 041 */     if (scan_mutableStateArray_1[0] == null) {
/* 042 */       scan_nextBatch_0();
/* 043 */     }
/* 044 */     while (scan_mutableStateArray_1[0] != null) {
/* 045 */       int scan_numRows_0 = scan_mutableStateArray_1[0].numRows();
/* 046 */       int scan_localEnd_0 = scan_numRows_0 - scan_batchIdx_0;
/* 047 */       for (int scan_localIdx_0 = 0; scan_localIdx_0 < scan_localEnd_0; scan_localIdx_0++) {
/* 048 */         int scan_rowIdx_0 = scan_batchIdx_0 + scan_localIdx_0;
/* 049 */         if (!scan_mutableStateArray_1[0].validAt(scan_rowIdx_0)) { continue; }
/* 050 */         do {
/* 051 */           boolean scan_isNull_0 = scan_mutableStateArray_2[0].isNullAt(scan_rowIdx_0);
/* 052 */           long scan_value_0 = scan_isNull_0 ? -1L : (scan_mutableStateArray_2[0].getLong(scan_rowIdx_0));
/* 053 */
/* 054 */           if (!(!scan_isNull_0)) continue;
/* 055 */
/* 056 */           boolean filter_value_2 = false;
/* 057 */           filter_value_2 = scan_value_0 == 1000L;
/* 058 */           if (!filter_value_2) continue;
/* 059 */
/* 060 */           ((org.apache.spark.sql.execution.metric.SQLMetric) references[2] /* numOutputRows */).add(1);
/* 061 */
/* 062 */           agg_doConsume_0();
/* 063 */
/* 064 */         } while(false);
/* 065 */         // shouldStop check is eliminated
/* 066 */       }
/* 067 */       scan_batchIdx_0 = scan_numRows_0;
/* 068 */       scan_mutableStateArray_1[0] = null;
/* 069 */       scan_nextBatch_0();
/* 070 */     }
/* 071 */     ((org.apache.spark.sql.execution.metric.SQLMetric) references[1] /* scanTime */).add(scan_scanTime_0 / (1000 * 1000));
/* 072 */     scan_scanTime_0 = 0;
/* 073 */
/* 074 */   }
/* 075 */
/* 076 */   private void scan_nextBatch_0() throws java.io.IOException {
/* 077 */     long getBatchStart = System.nanoTime();
/* 078 */     if (scan_mutableStateArray_0[0].hasNext()) {
/* 079 */       scan_mutableStateArray_1[0] = (org.apache.spark.sql.vectorized.ColumnarBatch)scan_mutableStateArray_0[0].next();
/* 080 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[0] /* numOutputRows */).add(scan_mutableStateArray_1[0].numRows());
/* 081 */       scan_batchIdx_0 = 0;
/* 082 */       scan_mutableStateArray_2[0] = (org.apache.spark.sql.execution.vectorized.OffHeapColumnVector) (outputMetaColumns ?
/* 083 */         scan_mutableStateArray_1[0].column(0, true) : scan_mutableStateArray_1[0].column(0));
/* 084 */
/* 085 */     }
/* 086 */     scan_scanTime_0 += System.nanoTime() - getBatchStart;
/* 087 */   }
/* 088 */
/* 089 */   private void agg_doConsume_0() throws java.io.IOException {
/* 090 */     // do aggregate
/* 091 */     // common sub-expressions
/* 092 */
/* 093 */     // evaluate aggregate function
/* 094 */     long agg_value_1 = -1L;
/* 095 */     agg_value_1 = agg_bufValue_0 + 1L;
/* 096 */     // update aggregation buffer
/* 097 */     agg_bufIsNull_0 = false;
/* 098 */     agg_bufValue_0 = agg_value_1;
/* 099 */
/* 100 */   }
/* 101 */
/* 102 */   protected void processNext() throws java.io.IOException {
/* 103 */     while (!agg_initAgg_0) {
/* 104 */       agg_initAgg_0 = true;
/* 105 */       long agg_beforeAgg_0 = System.nanoTime();
/* 106 */       agg_doAggregateWithoutKey_0();
/* 107 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[4] /* aggTime */).add((System.nanoTime() - agg_beforeAgg_0) / 1000000);
/* 108 */
/* 109 */       // output the result
/* 110 */
/* 111 */       ((org.apache.spark.sql.execution.metric.SQLMetric) references[3] /* numOutputRows */).add(1);
/* 112 */       scan_mutableStateArray_3[2].reset();
/* 113 */
/* 114 */       scan_mutableStateArray_3[2].zeroOutNullBytes();
/* 115 */
/* 116 */       scan_mutableStateArray_3[2].write(0, agg_bufValue_0);
/* 117 */       append((scan_mutableStateArray_3[2].getRow()));
/* 118 */     }
/* 119 */   }
/* 120 */
/* 121 */ }

阿里巴巴开源大数据技术团队成立Apache Spark中国技术社区,定期推送精彩案例,技术专家直播,问答区数个Spark技术同学每日在线答疑,只为营造纯粹的Spark氛围,欢迎钉钉扫码加入!
二维码.JPG

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
相关文章
|
7月前
|
设计模式 SQL 分布式计算
Spark Day06:Spark Core之Spark 内核调度和SparkSQL快速入门
Spark Day06:Spark Core之Spark 内核调度和SparkSQL快速入门
80 0
|
3月前
|
分布式计算 Shell Scala
学习使用Spark
学习使用Spark
124 3
|
4月前
|
SQL 机器学习/深度学习 分布式计算
Spark框架
【8月更文挑战第31天】Spark框架
48 2
|
4月前
|
分布式计算 资源调度 Shell
如何开始使用Spark框架?
【8月更文挑战第31天】如何开始使用Spark框架?
92 2
|
4月前
|
分布式计算 Shell Scala
如何开始学习使用Spark?
【8月更文挑战第31天】如何开始学习使用Spark?
126 2
|
分布式计算 Spark
SPARK中的wholeStageCodegen全代码生成--GenerateUnsafeProjection.createCode说明
SPARK中的wholeStageCodegen全代码生成--GenerateUnsafeProjection.createCode说明
142 0
|
SQL 分布式计算 Spark
Spark中的WholeStageCodegenExec(全代码生成)
Spark中的WholeStageCodegenExec(全代码生成)
576 0
Spark中的WholeStageCodegenExec(全代码生成)
|
分布式计算 Java 网络安全
【Spark】(task1)PySpark基础数据处理
)Scala 是一门多范式(multi-paradigm)的编程语言,设计初衷是要集成面向对象编程和函数式编程的各种特性。 Scala 运行在 Java 虚拟机上,并兼容现有的 Java 程序。
326 0
【Spark】(task1)PySpark基础数据处理
|
Java 分布式计算 Spark
Spark Codegen浅析
Codegen是Spark Runtime优化性能的关键技术,核心在于动态生成java代码、即时compile和加载,把解释执行转化为编译执行。Spark Codegen分为Expression级别和WholeStage级别,分别针对表达式计算和全Stage计算做代码生成,都取得了数量级的性能提升。本文浅析Spark Codegen技术原理。
4425 0
|
SQL JSON 分布式计算
Spark 2.4.0编程指南--Spark DataSources
parquet、orc、csv、json、text、avro格式文件的读、写 spark.sql直接运行文件 BucketyBy,PartitionBy 读写文件 mergining dataSet jdbc(mysql)读写操作 Hive操作(create drop database ,...
1286 0