Tablestore+Delta Lake(快速开始)

简介: 本文介绍如何在E-MapReduce中通过Tablestore Spark Streaming Source将TableStore中的数据实时导入到Delta Lake中。

作者:王卓然 花名琸然 阿里云存储服务技术专家


背景介绍

近些年来HTAP(Hybrid transaction/analytical processing)的热度越来越高,通过将存储和计算组合起来,既能支持传统的海量结构化数据分析,又能支持快速的事务更新写入,是设计数据密集型系统的一个成熟的架构。
表格存储(Tablestore)是阿里云自研的 NoSQL 多模型数据库,提供海量结构化数据存储以及快速的查询和分析服务(PB 级存储、千万 TPS 以及毫秒级延迟),借助于表格存储的底层引擎,能够很好的完成OLTP场景下的需求。Delta Lake类似于支持Delta的Data Lake(数据湖),使用列存来存base数据,行的格式存储新增delta数据,进而做到支持数据操作的ACID和CRUD,完全兼容Spark的大数据生态,通过结合Delta Lake和Spark生态,能够很好的完成OLAP场景下的需求。下图展示的是Tablestore和Delta Lake结合的HATP场景的一个简要的逻辑结构图,有关结构化大数据分析平台设计的更多细节和干货,可以参阅文章 结构化大数据分析平台设计

image.png

准备工作

  • 登录阿里云E-MapReduce控制台
  • 创建Hadoop集群(若已创建,请跳过)
  • 确保将Tablestore实例部署在E-MapReduce集群
    相同的VPC环境下

步骤一 创建Tablestore源表


详细开通步骤请参考官方文档,本文demo中所创建出来的表名为Source,表的Schema如下图所示,该表有PKString和PkInt两个主键,类型分别为String和Interger。
image.png

为表Source建立一个增量通道,如下图所示,通道列表里面会显示该通道的名字、ID以及类型。
image.png

技术注解:

通道服务(Tunnel Service)是基于Tablestore数据接口之上的全增量一体化服务,包含三种通道类型:

全量:对数据表中历史存量数据消费处理

增量:对数据表中新增数据消费处理
全量加增量:先对数据表总历史存量数据消费,之后对新增数据消费
通道服务的详细介绍可查询Tablestore官网文档

步骤二 获取相关jar包并上传到hadoop集群


  • 获取环境依赖的JAR包。

Jar包 | 获取方法 |
------- | ------- |
emr-tablestore-X.X.X.jarX.X.X: Since 1.9.0+ |Maven 库中下载:https://mvnrepository.com/artifact/com.aliyun.emr/emr-tablestore
tablestore-X.X.X-jar-with-dependencies.jar |下载 EMR SDK 相关的Tablestore依赖包。https://repo1.maven.org/maven2/com/aliyun/openservices/tablestore/5.3.0/tablestore-5.3.0-jar-with-dependencies.jar


  • 集群管理页面,单击已创建的Hadoop集群的集群ID ,进入集群与服务管理页面
  • 在左侧导航树中选择主机列表,然后在右侧查看Hadoop集群中emr-header-1主机的IP信息。
  • 在SSH客户端中新建一个命令窗口,登录Hadoop集群的emr-header-1主机。
  • 上传所有JAR包到emr-header-1节点的某个目录下。

步骤三 运行Spark Streaming作业


  1. 以一个基于emr demo修改的代码为样例,编译生成JAR包,JAR包需要上传到Hadoop集群的emr-header-1主机中(参见步骤二),完整的代码由于改动较大,不在本文中一一说明,后续会合到emr demo官方项目中。
  2. 该样例以Tablestore表作为数据源,通过结合Tablestore CDC技术,Tablestore Streaming Source和Delta Sink,演示的是TableStore到Delta Lake的一个完整链路。
  3. 按以下命令,启动spark streaming作业,开启一个实时同步Tablestore Source表中数据到Delta Lake Table的监听程序。

各个参数说明如下:

参数 参数说明
com.aliyun.emr.example.spark.sql.streaming.DeltaTableStoreCDC 所要运行的主程序类
emr-tablestore-X.X.X-SNAPSHOT.jar 包含Tablestore source的jar包
tablestore-X.X.X-jar-with-dependencies.jar EMR SDK 相关的Tablestore依赖包
examples-X.X.X-shaded.jar 基于EMR demo修改的包(包含主程序类)
instance Tablestore实例名
tableName Tablestore表名
tunnelId Tablestore表的通道Id
accessKeyId Tablestore的accessKeyId
accessKeySecret Tablestore的秘钥
endPoint Tablestore实例的endPoint
maxOffsetsPerChannel Tablestore通道 Channel在每个Spark Batch周期内同步的最大数据条数,默认10000。
catalog 同步的列名,详见Catalog字段说明

步骤四 数据CRUD示例


  1. 首先在TableStore里插入两行,本次示例中,我们建了8列的同步列,包括两个主键(PkString, PkInt)和六个属性列(col1, col2, col3, timestamp, col5和col6)。由于表格存储是Free-Schema的结构,我们可以任意的插入属性列,TableStore的Spark Source会自动的做属性列的筛选。如下面两张图所示,在插入两行数据后,Delta Table中同步也可以马上读取到两行,且数据一致。
    image.png

image.png

  1. 接着,在Tablestore中进行一些更新行和插入行的操作,如下面的两个图所示,等待一小段micro-batch的数据同步后,表格存储中的数据同步变化能够即时的更新到Delta Table中。
    image.png

image.png

  1. 将Tablestore中的数据全部清空,如下面两图所示,Delta Table也同步的变成了空。
    image.png

image.png

  1. 在集群上,Delta Table默认存放在HDFS中,如下图所示,_delta_log目录中存放的json文件是Transaction log,parquet格式的文件是底层的数据文件。
    image.png

相关文章推荐:5分钟迅速搭建云上Lambda大数据分析架构


阿里巴巴开源大数据技术团队成立Apache Spark中国技术社区,定期推送精彩案例,技术专家直播,问答区数个Spark技术同学每日在线答疑,只为营造纯粹的Spark氛围,欢迎钉钉扫码加入!
image.png

相关文章
|
Kubernetes 监控 Docker
Docker 容器生命周期:创建、启动、暂停与停止
Docker 容器生命周期:创建、启动、暂停与停止
1548 0
|
12月前
|
人工智能 Java 程序员
一文彻底拿下,赶紧本地部署DeepSeek体验一下最牛的大模型
本文介绍如何本地化部署DeepSeek大模型(deepseek-r1)及open-webui的安装过程,包括命令行操作、版本兼容性处理等详细步骤。DeepSeek号称“国运级”大模型,性能媲美OpenAI,支持直接对话,降低使用门槛。通过本教程,读者可以快速上手体验这一强大的推理模型。
861 0
一文彻底拿下,赶紧本地部署DeepSeek体验一下最牛的大模型
|
存储 缓存 弹性计算
重新审视 CXL 时代下的分布式内存
从以太网到 RDMA 再到 CXL,标志着互连技术的重大突破。
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
841 1
|
网络协议 安全 网络安全
【专栏】IPv6是为解决IPv4地址不足、安全性和配置复杂性问题而提出的下一代互联网协议
【4月更文挑战第28天】IPv6是为解决IPv4地址不足、安全性和配置复杂性问题而提出的下一代互联网协议。它提供128位地址空间(几乎无限)、简化报文格式、内置IPsec安全机制、自动配置能力及增强的QoS。IPv6的优势包括更高的传输效率、更强的安全性、移动性和组播功能,以及即插即用的设备。然而,部署面临IPv4兼容性、技术更新、经济驱动和安全挑战。随着技术发展,IPv6的普及将成为必然趋势。
1519 1
|
Ubuntu Python
ubuntu build install python3.12 and config pip
该脚本用于在 Ubuntu 上编译安装 Python 3.12,并配置 pip 使用国内镜像源。主要步骤包括安装依赖、下载并解压 Python 源码、编译安装、创建符号链接、配置 pip 源,以及验证安装和更新 pip。通过运行此脚本,可以快速完成 Python 3.12 的安装和配置。
1912 0
|
消息中间件 Kafka 数据库
实时计算 Flink版操作报错之遇到UnsupportedOperationException异常,该如何处理
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
小程序 C++
【微信小程序-原生开发】实用教程19 - 表单范例 VS 表单校验(含必填校验函数封装,实时数字校验)
【微信小程序-原生开发】实用教程19 - 表单范例 VS 表单校验(含必填校验函数封装,实时数字校验)
354 0
免费获取最新版xshell和xftp的方法
免费获取最新版xshell和xftp的方法
541 0