Pycharm为Python项目配置环境不生效,解决办法
在PyCharm中,项目依赖配置更改后未生效。解决步骤包括:1) 查找`C:\Users\username\AppData\Roaming\JetBrains\PyCharm2022.2\options\jdk.table.xml`,2) 删除`<jdk></jdk>`标签内的旧配置内容,然后重启PyCharm以应用新目录。
使用Echo和Gin构建高性能Web服务的技术文档
本文档对比了Go语言中的两个流行Web框架——Echo和Gin。Echo是一个高性能、可扩展的框架,适合构建微服务和API,强调简洁API和并发性能。Gin基于net/http包,具有Martini风格API,以其快速路由和丰富社区支持闻名。在性能方面,Gin的路由性能出色,两者并发性能均强,内存占用低。文中还提供了使用Echo和Gin构建Web服务的代码示例,帮助开发者了解如何运用这两个框架。选择框架应考虑项目需求和个人喜好。
WebSocket API 详解与应用指南
WebSocket API 是HTML5的一种技术,它允许服务器与客户端建立持久的全双工连接,改变传统HTTP请求-响应模式,实现双向通信。API包括WebSocket构造函数、连接状态属性(如readyState)、方法(如send和close)及事件(如onopen和onmessage)。它简化了实时Web应用程序的开发,适用于在线聊天、实时数据监控等场景。
CSS基础-CSS选择器:ID、Class、Tag
【6月更文挑战第7天】本文介绍了CSS中的三种基本选择器:ID、Class和Tag选择器。Tag选择器适用于统一设置同类型元素样式,但可能造成样式泛化;Class选择器灵活性高,适合复用,注意命名规范和避免过度使用;ID选择器具有最高优先级,用于唯一标识,应谨慎使用。理解其特点和场景,结合良好命名规范,能提升CSS代码效率和可维护性。
机器学习:升维(Polynomial Regression)
该文介绍了升维的概念,指出在低维度中难以对混合数据进行有效分类,而升维是通过算法将数据投射到高维空间以改善模型性能。文章以多项式回归为例,说明了如何通过升维将非线性关系转换为线性关系,并提供了Python代码示例展示了如何使用`PolynomialFeatures`进行升维。代码结果显示,随着维度增加,模型从欠拟合逐渐过渡到过拟合。
【一文解读】阿里自研开源核心搜索引擎 Havenask简介及发展历史
本次分享内容为Havenask的简介及发展历史,由下面五个部分组成(Havenask整体介绍、名词解释、架构、代码结构、编译与部署),希望可以帮助大家更好了解和使用Havenask。
Golang深入浅出之-Go语言 defer、panic、recover:异常处理机制
Go语言中的`defer`、`panic`和`recover`提供了一套独特的异常处理方式。`defer`用于延迟函数调用,在返回前执行,常用于资源释放。它遵循后进先出原则。`panic`触发运行时错误,中断函数执行,直到遇到`recover`或程序结束。`recover`在`defer`中捕获`panic`,恢复程序执行。注意避免滥用`defer`影响性能,不应对可处理错误随意使用`panic`,且`recover`不能跨goroutine捕获panic。理解并恰当使用这些机制能提高代码健壮性和稳定性。
大数据项目管理:从需求分析到成果交付的全流程指南
【4月更文挑战第9天】本文介绍了大数据项目从需求分析到成果交付的全过程,包括需求收集与梳理、可行性分析、项目规划、数据准备与处理、系统开发与集成,以及成果交付与运维。文中通过实例展示了如何进行数据源接入、数据仓库建设、系统设计、算法开发,同时强调了需求理解、知识转移、系统运维的重要性。此外,还提供了Python和SQL代码片段,以说明具体技术实现。在大数据项目管理中,需结合业务和技术,灵活运用这些方法,确保项目的成功执行和价值实现。
使用MergeKit创建自己的专家混合模型:将多个模型组合成单个MoE
MoE架构通过MergeKit实现新突破,允许整合预训练模型创建frankenMoEs,如FrankenMoE,区别于头开始训练的MoEs。MergeKit工具支持选择专家模型,定义正负提示,并生成MoE配置。
Moment:又一个开源的时间序列基础模型
MOMENT团队推出Time-series Pile,一个大型公共时间序列数据集,用于预训练首个开源时间序列模型家族。模型基于Transformer,采用遮蔽预训练技术,适用于预测、分类、异常检测和输入任务。研究发现,随机初始化比使用语言模型权重更有效,且直接预训练的模型表现出色。MOMENT改进了Transformer架构,调整了Layer norm并引入关系位置嵌入。模型在长期预测和异常检测中表现优异,但对于数值预测的效果尚不明朗。论文贡献包括开源方法、数据集创建和资源有限情况下的性能评估框架。
DataWorks报错问题之DataWorks报错odps-0433121: User is not added in the list - Only users in the operator account white list have permission to do that如何解决
DataWorks是阿里云提供的一站式大数据开发与管理平台,支持数据集成、数据开发、数据治理等功能;在本汇总中,我们梳理了DataWorks产品在使用过程中经常遇到的问题及解答,以助用户在数据处理和分析工作中提高效率,降低难度。
选择最适合数据的嵌入模型:OpenAI 和开源多语言嵌入的对比测试
OpenAI最近发布了他们的新一代嵌入模型*embedding v3*,他们将其描述为性能最好的嵌入模型,具有更高的多语言性能。这些模型分为两类:较小的称为text- embeddings -3-small,较大且功能更强大的称为text- embeddings -3-large。
MATLAB | 插值算法 | 二维griddata插值法 | 附数据和出图代码 | 直接上手
MATLAB | 插值算法 | 二维griddata插值法 | 附数据和出图代码 | 直接上手
【前沿技术】 阿里开源搜索引擎Havenask的消息系统
Havenask是阿里巴巴智能引擎事业部自研的开源高性能搜索引擎,深度支持了包括淘宝、天猫、菜鸟、高德、饿了么在内几乎整个阿里的搜索业务。本文针对性介绍了Havenask的消息系统--Swift,它是一个设计用于处理大规模的数据流和实时消息传递的高性能、可靠的消息系统。
使用 PAI X EasyPhoto 生成 AI 写真
AIGC生成专属双旦美图,节日氛围拉满基于 EasyPhoto X 人工智能平台 PAI,完成圣诞/新年主题个人AIGC写真生成。
MLX vs MPS vs CUDA:苹果新机器学习框架的基准测试
如果你是一个Mac用户和一个深度学习爱好者,你可能希望在某些时候Mac可以处理一些重型模型。苹果刚刚发布了MLX,一个在苹果芯片上高效运行机器学习模型的框架。
经典的机器学习模型及神经网络
当谈到机器学习模型时,我们通常会指的是一系列用于从数据中学习模式并做出预测的算法。这些模型可以应用在各种领域,如图像识别、自然语言处理、推荐系统等。下面我将详细介绍一些常见的机器学习模型,包括传统的统计模型和深度学习模型。
通义千问开源模型在PAI灵骏的最佳实践
本文将展示如何基于阿里云PAI灵骏智算服务,在通义千问开源模型之上进行高效分布式继续预训练、指令微调、模型离线推理验证以及在线服务部署。
在 Visual Studio Code 中使用 CodeFuse
Visual Studio Code作为一款广受程序员欢迎的代码编辑器,在前端开发和各类脚本语言开发中占据主流地位,CodeFuse智能研发助手就专门为VS Code研发了插件,只要安装插件就可以使用CodeFuse提供的各种功能,下面我们看看如何在VS Code中使用CodeFuse插件呢?
使用FastAPI部署Ultralytics YOLOv5模型
YOLO是You Only Look Once(你只看一次)的缩写,它具有识别图像中的物体的非凡能力,在日常应用中会经常被使用。所以在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。
常用的相似度度量总结:余弦相似度,点积,L1,L2
相似性度量在机器学习中起着至关重要的作用。这些度量以数学方式量化对象、数据点或向量之间的相似性。理解向量空间中的相似性概念并采用适当的度量是解决广泛的现实世界问题的基础。本文将介绍几种常用的用来计算两个向量在嵌入空间中的接近程度的相似性度量。
人工智能在金融风险管理中的应用
人工智能在金融风险管理中的应用已经取得了显著的进展,并在提高风险管理效率和准确性方面发挥了重要作用。通过信用评估、欺诈检测、投资组合管理等应用,人工智能为金融行业带来了新的机遇和挑战。然而,我们也要认识到人工智能在风险管理中可能面临的隐私、解释性和偏差等问题。未来,随着技术的发展,人工智能将在金融领域持续发挥重要作用,为金融行业创造更加安全和稳健的环境。
智能代理:改变人机交互的方式
智能代理作为一种新的人机交互方式,正在改变着人们与计算机系统之间的互动方式。从个人助手、聊天机器人到游戏智能,智能代理在多个领域展示了其强大的应用潜力。然而,智能代理也面临着语义理解、个性化定制和隐私等挑战。随着人工智能技术的不断发展,智能代理有望成为未来人机交互的重要方式之一。
基于时态差分法的强化学习:Sarsa和Q-learning
时态差分法(Temporal Difference, TD)是一类在强化学习中广泛应用的算法,用于学习价值函数或策略。Sarsa和Q-learning都是基于时态差分法的重要算法,用于解决马尔可夫决策过程(Markov Decision Process, MDP)中的强化学习问题。
快速玩转 Llama2!机器学习 PAI 最佳实践(二)—全参数微调训练
本实践将采用阿里云机器学习平台PAI-DSW模块针对 Llama-2-7B-Chat 进行全参数微调。PAI-DSW是交互式建模平台,该实践适合需要定制化微调模型,并追求模型调优效果的开发者。
阿里云dsw实例git clone Hugging Face
因为网络及python包版本的原因,dsw实例在使用git指令下载hugging face资源的时候,总是会出现这样或那样的问题,本文基于实际测试遇到的情况,给出对应的解决方案。
【NLP Tool -- NLTK】NLTK进行英文情感分析、分词、分句、词性标注(附代码)
NLP自然语言处理之NLTK工具的使用,进行英文情感分析、分词、分句、词性标注(附代码)
【论文解读】A review on the attention mechanism of deep learning
注意力已经成为深度学习中最重要的概念之一。本文旨在对近年来提出的最新注意力模型作概述。我们建立了一个较为通用的模型,此外根据四个标准即注意力的柔软性、输入特征的形式、输入表示和输出表示来对当前注意力模型进行分类。最后讨论了注意力在深度学习可解释上的作用。
Flink CEP 新特性进展与在实时风控场景的落地
本次分享将会介绍 Flink 社区在 1.16 中对 Flink CEP 所做的增强与优化。
Spark+Celeborn:更快,更稳,更弹性
本文整理自阿里云 EMR Spark 团队的周克勇(一锤),在 Spark&DS Meetup 的分享。
「开源人说」| 大数据王峰——云原生时代,做不忘初心开源牧码人
王峰 阿里巴巴开源委员会大数据AI领域副主席 阿里云开源大数据平台负责人 Flink中文社区发起人
Spark on k8s 在阿里云 EMR 的优化实践
本文整理自阿里云技术专家范佚伦在7月17日阿里云数据湖技术专场交流会的分享。
数据开发(DataStudio)降本提效的核心利器 | 《一站式大数据开发治理DataWorks使用宝典》
随着阿里集团登月计划的启动和数据中台的发展,DataWorks也进行了多次迭代。2015年DataWorks以D+的形态进入公共云及专有云市场,开始服务政企用户。2016年数加平台发布,数加品牌把DataWorks和MaxCompute这个强有力的组合推向市场。2017、2018和2020年,DataWorks完成了国际化及从2.0到3.0版本的升级。 现在,DataWorks已经成为了一个能够支持多个引擎、多实例以及跨地域调度的强大的大数据生产调度工具了。
汽车之家:基于 Flink + Iceberg 的湖仓一体架构实践
由汽车之家实时计算平台负责人邸星星在 4 月 17 日上海站 Meetup 分享的,基于 Flink + Iceberg 的湖仓一体架构实践。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。