
为什么PHP爬虫抓取失败?解析cURL常见错误原因
豆瓣电影评分是电影市场的重要参考,通过网络爬虫技术可以高效采集评分数据,帮助电影制作和发行方优化策略。本文介绍使用PHP cURL库和代理IP技术抓取豆瓣电影评分的方法,解决反爬机制、网络设置和数据解析等问题,提供详细代码示例和优化建议。
不可不知道的test工具的使用方法及参数设置
本文介绍了`test`工具在Shell命令测试中的应用,包括检查文件存在性、权限、文件比较、数值和字符串比较以及多条件判断等常见用法,并提供了具体示例。
final 在 java 中有什么作用
在 Java 中,`final` 关键字用于限制变量、方法和类的修改或继承。对变量使用 `final` 可使其成为常量;对方法使用 `final` 禁止其被重写;对类使用 `final` 禁止其被继承。
小红书商品详情API接口获取步骤
小红书商品详情API接口使用指南:先注册并实名认证获取权限,阅读API文档了解使用方法;通过编程调用API,构建请求参数,处理返回数据;注意高并发下的性能优化,确保安全合规;申请API权限,查阅文档,完成开发与调试。
Spring 框架的介绍(Java EE 学习笔记02)
Spring是一个由Rod Johnson开发的轻量级Java SE/EE一站式开源框架,旨在解决Java EE应用中的多种问题。它采用非侵入式设计,通过IoC和AOP技术简化了Java应用的开发流程,降低了组件间的耦合度,支持事务管理和多种框架的无缝集成,极大提升了开发效率和代码质量。Spring 5引入了响应式编程等新特性,进一步增强了框架的功能性和灵活性。
如何使用Python开发1688商品详情API接口?
本文介绍了如何使用Python开发1688商品详情API接口,获取商品的标题、价格、销量和评价等详细信息。主要内容包括注册1688开放平台账号、安装必要Python模块、了解API接口、生成签名、编写Python代码、解析返回数据以及错误处理和日志记录。通过这些步骤,开发者可以轻松地集成1688商品数据到自己的应用中。
【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
【赵渝强老师】基于RBF的HDFS联邦架构
最新版Hadoop实现了基于Router的联盟架构,增强了集群管理能力。Router将挂载表从客户端中分离,解决了ViewFS的问题。RBF架构包括Router和State Store两个模块,其中Router作为代理服务,负责解析ViewFS并转发请求至正确子集群,State Store则维护子集群的状态和挂载表信息。
【赵渝强老师】Spark Streaming中的DStream
本文介绍了Spark Streaming的核心概念DStream,即离散流。DStream通过时间间隔将连续的数据流转换为一系列不连续的RDD,再通过Transformation进行转换,实现流式数据的处理。文中以MyNetworkWordCount程序为例,展示了DStream生成RDD的过程,并附有视频讲解。
【赵渝强老师】Spark生态圈组件
本文介绍了Spark的生态圈体系架构,包括其核心执行引擎Spark Core、结构化数据处理模块Spark SQL、实时数据流处理模块Spark Streaming,以及机器学习框架MLlib和图计算框架GraphX。文中通过图片和视频详细解析了各模块的功能及访问接口。
阿里云DataV“山海计划” x Epic Fab:“中国风AIGC”助力智慧城市建设
DataV“山海计划”根据中国城市规划特色,建立城市地块、建筑、道路等“城市要素知识库”,基于AI大模型技术生成更贴近“中国特色”的城市场景。基于DataV“山海计划”的UE引擎插件已经登陆Epic Fab,广大UE引擎开发者可以通过该插件免费体验城市历史悠久的广州场景三维资产。除了三维城市场景生成,DataV为智慧城市提供完整的数据看板解决方案,提供200+基础图表、支持API、MySQL、SQL Server、人大金仓、达梦等30+数据源,通过DataV与UE引擎,广大开发者可以低成本获得“智慧城市”开发方案,将更多精力放在满足用户业务需求上,从而提升智慧城市项目的交付质量。
Java“UnsupportedEncodingException”解决
在Java编程中,“UnsupportedEncodingException”是一个常见的异常,通常发生在处理字符编码时。本文将介绍该异常的原因、常见场景及解决方法,帮助开发者有效应对字符编码问题。
从零开始构建nlp情感分析模型!
本教程介绍了如何使用PyTorch和Hugging Face的Transformers库构建一个情感分析模型。主要内容包括导入所需库、读取训练数据集、加载预训练的BERT模型和分词器、定义情感数据集类、划分训练集和验证集、创建数据加载器、设置训练参数、训练模型、评估模型性能以及定义和测试预测函数。通过这些步骤,可以实现一个简单而有效的情感分析模型。
如何创建自己的数据集!!!
本文介绍了如何创建和使用自定义数据集,特别是针对GitHub Issues的语料库。内容涵盖了从获取数据、清理数据到扩充数据集的全过程,最终将数据集上传到Hugging Face Hub并与社区分享。具体步骤包括使用GitHub REST API下载Issues,通过Python脚本进行数据处理,以及添加评论信息。此外,还介绍了如何创建数据集卡片,以提供详细的背景信息和使用指南。
java电商项目(一)
文档介绍了乐购商城项目的架构设计与实现过程,涵盖需求分析、系统设计、框架搭建及商品微服务的开发。项目采用B2C电商模式,前后端分离架构,使用Spring Boot、Spring Cloud等技术构建。主要内容包括 1. **需求分析与架构设计** - 描述了在Docker中启动容器、后台服务、前台门户和后台管理的具体步骤 - 详细介绍了系统的B2C电商模式及其前后端分离的设计理念 2. **技术架构** - 项目采用Spring Boot 2.1.9.RELEASE和Spring Cloud Greenwich.SR3 - 系统架构图展示了各个微服务之间的关系和交互

服务器linux!!!
本文介绍了计算机的演变历史、硬件基础知识及服务器相关知识。从电子管时代的ENIAC到冯-诺伊曼架构,再到现代计算机系统组成,详细讲解了计算机的发展历程。此外,文章还介绍了服务器的分类、品牌、硬件组成以及IDC机房的上架流程,为读者提供了全面的技术背景知识。
【EMNLP2024】面向长文本的文视频表征学习与检索模型 VideoCLIP-XL
阿里云人工智能平台 PAI 与华南理工大学金连文教授团队合作,在自然语言处理顶会 EMNLP 2024 上发表论文《VideoCLIP-XL: Advancing Long Description Understanding for Video CLIP Models》。VideoCLIP-XL 模型,有效地提升了对视频的长文本描述的理解能力。
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
计算机网络概念:网关,DHCP,IP寻址,ARP欺骗,路由,DDOS等
【10月更文挑战第27天】计算机主机网关的作用类似于小区传达室的李大爷,负责将内部网络的请求转发到外部网络。当小区内的小不点想与外面的小明通话时,必须通过李大爷(网关)进行联系。网关不仅帮助内部设备与外部通信,还负责路由选择,确保数据包高效传输。此外,网关还参与路由表的维护和更新,确保网络路径的准确性。
用 Python 爬取淘宝商品价格信息时需要注意什么?
使用 Python 爬取淘宝商品价格信息时,需注意法律和道德规范,遵守法律法规和平台规定,避免非法用途。技术上,可选择 Selenium 和 Requests 库,处理反爬措施如 IP 限制、验证码识别和请求频率控制。解析页面数据时,确定数据位置并清洗格式。数据存储可选择 CSV、Excel、JSON 或数据库,定期更新并去重。还需进行错误处理和日志记录,确保爬虫稳定运行。
如何理解结构体的浅拷贝与深拷贝
结构体的浅拷贝仅复制对象的引用或基本数据类型值,不创建新对象;深拷贝则会递归地复制所有对象及其引用的对象,形成完全独立的新对象。两者主要区别在于是否共享内部对象。
写歌词的技巧和方法全解析:开启你的音乐创作之旅,妙笔生词智能写歌词软件
怀揣音乐梦想,渴望用歌词抒发情感?掌握关键技巧,你也能踏上创作之旅。灵感来自生活点滴,主题明确,语言简洁,韵律和谐。借助“妙笔生词智能写歌词软件”,AI辅助创作,轻松写出动人歌词,实现音乐梦想。

抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
阿里云EMR StarRocks X Paimon创建 Streaming Lakehouse
讲师焦明烨介绍了StarRocks的数据湖能力,如何使用阿里云EMR StarRocks构建基于Paimon的极速实时湖仓,StarRocks与Paimon的最新进展及未来规划。
提高爬虫性能的 5 个关键技巧:从并发到异步执行
本文介绍了提高网络爬虫性能的五个关键技巧:并发请求、异步执行、使用代理IP、限制请求频率与休眠时间、优化数据提取与存储。结合拼多多的实际案例,展示了如何通过这些技术优化爬虫效率,确保数据采集的高效性和稳定性。
《触手可及,函数计算玩转 AI 大模型》解决方案体验与部署评测
在AI技术快速发展的背景下,大模型正推动各行业的智能化转型。企业为抓住机遇,纷纷寻求部署AI大模型以满足特定业务需求。阿里云函数计算凭借按量付费、卓越弹性和快速交付等优势,为企业提供了高效、安全的AI大模型部署方案。本文将详细介绍阿里云函数计算的技术解决方案及其在文生文、图像生成和语音生成等领域的应用实例,展示其在降低成本、提高效率和增强灵活性方面的显著优势。
从网络请求到Excel:自动化数据抓取和保存的完整指南
本文介绍了如何使用Python自动化采集东方财富股吧的发帖信息,并将其保存到Excel中。通过代理IP、多线程和网页解析技术,规避反爬虫机制,高效抓取帖子标题和发帖时间,帮助投资者获取市场情绪和热点数据。
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。
【10月更文挑战第8天】「Mac上学Python 16」小学奥数篇2 - 分糖果问题
本篇将通过 Python 和 Cangjie 双语解决一个经典的数学问题:如何将糖果平分给小朋友。这道题目将帮助初学者通过编程理解循环与条件判断的结合使用。
超越传统模型:探讨门控循环单元(GRU)在语音识别领域的最新进展与挑战
【10月更文挑战第7天】随着人工智能技术的不断进步,语音识别已经从一个相对小众的研究领域发展成为日常生活中的常见技术。无论是智能手机上的语音助手,还是智能家居设备,甚至是自动字幕生成系统,都离不开高质量的语音识别技术的支持。在众多用于语音识别的技术中,基于深度学习的方法尤其是递归神经网络(RNNs)及其变体如长短期记忆网络(LSTMs)和门控循环单元(GRUs)已经成为了研究和应用的热点。
变量的声明与定义区别
变量的声明是指预先告知编译器变量的名称和类型,但不分配内存;而定义则是声明的同时在内存中分配空间,可以初始化。简单来说,声明是告诉编译器“有这么一个东西”,定义是“创建并使用这个东西”。
xargs 的简介,使用场景以及例子
### xargs的简介 xargs命令是Linux系统中一个非常有用的工具,用于从标准输入或文件中读取数据,并将其作为参数传递给其他命令。它可以将标准输入的文本数据转换为命令行参数,从而实现批处理操作。xargs命令通常用于处理一行一参数的情况,可以将来自标准输入的参数转换为命令行参数。 ### xargs的使用场景 xargs命令在Linux系统中有着广泛的应用,可以方便地将标准输入数据转换为命令行参数,并传递给指定的命令处理。它简化了很多复杂的操作,对于批量处理文件、并发执行命令等场景提供了便利。以下是一些常见的使用场景: 1. **批量删除文件**:结合find命令,批量删除指
汉字的探索性分词方式:基于字图的部首分解与图神经网络的多因素表示
本文提出一种结合传统字符嵌入与部首结构的图表示法,用于捕捉汉字的语义和组成结构,提升大模型对汉字的理解能力。方法包括将字符分解为部首,构建部首图,并利用图卷积网络生成嵌入。此方法增强了模型的泛化能力和灵活性,并提供了代码实现。未来可优化的方向包括改进图构建算法、扩展部首系统、探索更先进的图神经网络架构及多模态融合。
亿级数据处理,Pandas的高效策略
在大数据时代,数据量的爆炸性增长对处理技术提出更高要求。本文介绍如何利用Python的Pandas库及其配套工具高效处理亿级数据集,包括:采用Dask进行并行计算,分块读取以减少内存占用,利用数据库进行复杂查询,使用内存映射优化Pandas性能,以及借助PySpark实现分布式数据处理。通过这些方法,亿级数据处理变得简单高效,助力我们更好地挖掘数据价值。
【MM2024】面向 StableDiffusion 的多目标图像编辑算法 VICTORIA
阿里云人工智能平台 PAI 团队与华南理工大学合作在国际多媒体顶级会议 ACM MM2024 上发表 VICTORIA 算法,这是一种面向 StableDiffusion 的多目标图像编辑算法。VICTORIA 通过文本依存关系来修正图像编辑过程中的交叉注意力图,从而确保关系对象的一致性,支持用户通过修改描述性提示一次性编辑多个目标。
深度解析Python中的元编程:从装饰器到自定义类创建工具
【10月更文挑战第5天】在现代软件开发中,元编程是一种高级技术,它允许程序员编写能够生成或修改其他程序的代码。这使得开发者可以更灵活地控制和扩展他们的应用逻辑。Python作为一种动态类型语言,提供了丰富的元编程特性,如装饰器、元类以及动态函数和类的创建等。本文将深入探讨这些特性,并通过具体的代码示例来展示如何有效地利用它们。
守护数字资产:服务器迁移期间的安全挑战与对策
【10月更文挑战第4天】在数字化转型的浪潮中,服务器迁移成为企业不可避免的任务。然而,迁移过程中的安全挑战不容忽视。本文从安全考量的角度,探讨了服务器迁移期间可能遇到的安全问题,并提供了相应的对策和代码示例。

数据准备指南:10种基础特征工程方法的实战教程
在数据分析和机器学习中,从原始数据中提取有价值的信息至关重要。本文详细介绍了十种基础特征工程技术,包括数据插补、数据分箱、对数变换、数据缩放、One-Hot编码、目标编码、主成分分析(PCA)、特征聚合、TF-IDF 和文本嵌入。每种技术都有具体应用场景和实现示例,帮助读者更好地理解和应用这些方法。通过合理的特征工程,可以显著提升模型的性能和预测能力。
数据治理:解锁数据资产潜力,驱动企业决策与业务增长的密钥
在当今这个数据驱动的时代,企业所拥有的数据资产已成为其核心竞争力的重要组成部分。然而,仅仅拥有海量数据并不足以确保成功,关键在于如何有效地管理和利用这些数据,以支持精准决策、优化运营流程并推动业务持续增长。这就是数据治理的重要性所在——它是一套系统性的方法和流程,旨在确保数据质量、安全性、可用性和合规性,从而让数据资产能够最大化地支持企业决策和业务增长。
数据污染不容小觑,数据治理策略助你轻松应对!
企业应成立专门的数据治理团队,负责数据质量的管理和监控。同时,制定数据治理的流程和规范,明确数据的质量管理流程、责任分工和协作机制,确保数据治理工作的有序进行。
CDGA|数据治理:安全如何贯穿数据供给、流通、使用全过程
随着信息技术的飞速发展,数据已经成为企业运营、社会管理和经济发展的核心要素。然而,数据在带来巨大价值的同时,也伴随着诸多安全风险。因此,数据治理的重要性日益凸显,它不仅仅是对数据的简单管理,更是确保数据在供给、流通和使用全过程中安全、合规、高效的关键。
CDGA|数据治理:解锁各行业数据驱动业务发展的新篇章
数据治理已成为推动各行业业务发展的重要引擎。通过实施科学的数据治理策略,企业能够充分挖掘数据价值,提升运营效率,优化决策过程,实现可持续发展。未来,随着技术的不断进步和数据的持续积累,数据治理将在更多领域发挥重要作用,为企业和社会创造更大价值。

大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。