SmolDocling技术解析:2.56亿参数胜过70亿参数的轻量级文档处理模型
SmolDocling是由HuggingFace与IBM联合研发的超紧凑视觉模型,专为端到端文档转换设计。基于SmolVLM-256M开发,参数量仅2.56亿,却媲美大型模型性能。其核心创新在于DocTags格式,一种类XML标记语言,能全面表示文档内容与结构。SmolDocling通过端到端架构实现图像理解与文本生成整合,在文档分类、OCR、布局分析等任务中表现出色。评估显示,其在多项指标上优于大参数量模型,适用于资源受限场景,推动文档处理技术发展。
如何用Pyppeteer打造高并发无头浏览器采集方案
本文从电商行业数据采集痛点出发,结合 Pyppeteer 高并发无头浏览器技术,打造可配置代理的高效采集方案。通过爬虫代理突破 IP 限制,模拟真实用户行为,实现 Amazon 特价商品数据的稳定抓取与分析。代码示例详细展示了代理集成、并发控制及数据处理流程,实验验证效率提升超 4 倍。该方案助力商业决策、竞品分析,并支持技术扩展与创新应用。
阿里云 AI 搜索开放平台新增:服务开发能力
阿里云 AI 搜索开放平台新发布:服务开发能,可通过集成 dsw 能力并新增 notebook 功能,进一步提升用户编排效率。
微店商品列表 API 接口(附代码示例)
微店商品列表 API 为开发者提供从微店平台获取商品数据的便捷途径,支持分页、分类筛选和排序等功能,响应数据以 JSON 格式返回,包含商品 ID、名称、价格等信息。通过 Python 的 `requests` 库,开发者可轻松调用该接口,实现电商工具开发、市场分析等场景应用。示例代码展示了如何发送请求并处理响应数据,助力高效利用 API 拓展业务功能。
Perforated Backpropagation:神经网络优化的创新技术及PyTorch使用指南
深度学习近年来在多个领域取得了显著进展,但其核心组件——人工神经元和反向传播算法自提出以来鲜有根本性突破。穿孔反向传播(Perforated Backpropagation)技术通过引入“树突”机制,模仿生物神经元的计算能力,实现了对传统神经元的增强。该技术利用基于协方差的损失函数训练树突节点,使其能够识别神经元分类中的异常模式,从而提升整体网络性能。实验表明,该方法不仅可提高模型精度(如BERT模型准确率提升3%-17%),还能实现高效模型压缩(参数减少44%而无性能损失)。这一革新为深度学习的基础构建模块带来了新的可能性,尤其适用于边缘设备和大规模模型优化场景。
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
【SQL周周练】给你无酸纸、变色油墨,你能伪造多少美金?
根据电影《无双》自创的 SQL 题目:假设伪钞集团每日给你供应随机数量的变色油墨、无酸纸、安全线/防伪线。请你计算每天能制作伪钞多少张,并且根据当天的情况输出第二天最缺少的材料。
大数据新视界--大数据大厂之MySQL数据库课程设计:MySQL集群架构负载均衡故障排除与解决方案
本文深入探讨 MySQL 集群架构负载均衡的常见故障及排除方法。涵盖请求分配不均、节点无法响应、负载均衡器故障等现象,介绍多种负载均衡算法及故障排除步骤,包括检查负载均衡器状态、调整算法、诊断修复节点故障等。还阐述了预防措施与确保系统稳定性的方法,如定期监控维护、备份恢复策略、团队协作与知识管理等。为确保 MySQL 数据库系统高可用性提供全面指导。
移动端数据抓取:Android App的TLS流量解密方案
本文介绍了一种通过TLS流量解密技术抓取知乎App热榜数据的方法。利用Charles Proxy解密HTTPS流量,分析App与服务器通信内容;结合Python Requests库模拟请求,配置特定请求头以绕过反爬机制。同时使用代理IP隐藏真实IP地址,确保抓取稳定。最终成功提取热榜标题、内容简介、链接等信息,为分析热点话题和用户趋势提供数据支持。此方法也可应用于其他Android App的数据采集,但需注意选择可靠的代理服务。
electron35-vue3-deepseek客户端流式输出AI对话系统
Electron35-DeepSeek桌面端AI系统|vue3.5+electron+arco客户端ai模板。2025跨平台ai实战electron35+vite6+arco仿DeepSeek/豆包ai流式打字聊天助手。
深入研究:微店商品列表API接口详解
微店商品列表API接口支持开发者以编程方式获取微店平台的商品数据,适用于电商数据分析、商品展示等场景。请求方式为POST,需提供`method`和`access_token`等参数,可选参数包括页码、排序方式、商品状态及关键词等。返回数据为JSON格式,包含商品ID、标题、价格、库存和缩略图URL等信息。常见错误包括`access_token`无效或参数错误,需根据错误码调整请求。
云函数采集架构:Serverless模式下的动态IP与冷启动优化
本文探讨了在Serverless架构中使用云函数进行网页数据采集的挑战与解决方案。针对动态IP、冷启动及目标网站反爬策略等问题,提出了动态代理IP、请求头优化、云函数预热及容错设计等方法。通过网易云音乐歌曲信息采集案例,展示了如何结合Python代码实现高效的数据抓取,包括搜索、歌词与评论的获取。此方案不仅解决了传统采集方式在Serverless环境下的局限,还提升了系统的稳定性和性能。
开发体育比分网站有哪些坑需要注意
开发体育比分网站需克服多方面挑战:数据来源上避免侵权,选用合法API;实时性上采用WebSocket等技术确保秒级更新;优化用户体验,极简设计配合实时动画;技术架构中使用缓存与微服务应对高并发;SEO方面通过SSR和服务端结构化数据提升搜索流量。示例代码展示了比赛数据的基本处理逻辑,包括设置比赛ID、状态、赢家信息及计划标记等功能。
解锁政策红利:大数据时代的企业与个人发展新契机
在大数据与机器学习时代,政策解读、预测分析和个性化匹配成为挖掘发展新动能的重要工具。无论是企业还是个人,都能借助先进技术轻松理解复杂政策,把握趋势先机。文章探讨了自由职业者、创业者及企业员工如何通过政策支持实现协同发展,并介绍了“政策宝”这一智慧助手,助力用户发现和利用政策红利,抓住机遇实现目标。探索政策宝库,开启发展新征程!
如何用大数据与机器学习挖掘瞪羚企业认定标准
本文探讨如何利用大数据与机器学习技术挖掘瞪羚企业认定标准。通过阿里云的大数据平台和政策宝资源整合能力,结合机器学习算法分析政策文本,提取关键信息,助力企业精准理解认定标准。文章对比了传统获取方式的局限性与新技术的优势,并以案例说明政策宝在申报中的作用,强调数据整合、模型选择及数据安全的重要性,为企业提供发展方向和政策支持。
RAL-Writer Agent:基于检索与复述机制,让长文创作不再丢失关键信息
RAL-Writer Agent是一种专业的人工智能写作辅助技术,旨在解决生成高质量、内容丰富的长篇文章时所面临的技术挑战,确保全文保持连贯性和相关性。本研究将系统分析RAL-Writer的核心技术架构、功能特点及其在内容创作、学术研究和专业交流领域的应用前景。
FlowMo: 模式搜索+扩散模型提升图像Token化性能
FlowMo是一种基于Transformer的扩散自编码器,无需卷积网络或对抗性损失,在图像Token化领域实现技术突破。它通过两阶段训练(模式匹配预训练与模式搜索后训练)和一维潜在表征,达到低高比特率下的领先性能。FlowMo摒弃传统方法限制,展现卓越重建质量,但推理计算开销较大。其创新为视觉生成系统提供了新方向。
数据分析异步进阶:aiohttp与Asyncio性能提升
本项目基于aiohttp与Asyncio开发异步爬虫,目标采集今日头条新闻数据。初期因网站限制机制导致请求异常,通过设置代理IP、Cookie和UserAgent解决拦截问题,并优化异步任务调度与异常捕获提升性能。方案包括动态代理池、统一请求头配置及日志监控,确保高并发下的稳定性。示例代码展示代理IP、请求头设置与错误处理方法,为类似项目提供参考。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
shopee商品列表API接口获取步骤
虾皮(Shopee)商品列表 API 接口用于获取平台商品信息,支持按店铺 ID、类目、关键词等筛选条件查询商品数据,包括商品基本信息、图片、描述等。接口具备灵活性、数据丰富及分页机制等特点,满足电商数据分析与管理需求。示例代码展示了通过 Python 请求 API 获取某店铺商品列表的过程,包含请求头设置、参数定义及异常处理等功能,便于开发者快速上手使用。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
最新AI大模型数据集解决方案:分享两种AI高质量代码数据集生产方案
本文分享了两种构建高质量AI代码数据集的解决方案。第一种是传统方式,结合动态住宅代理与手动处理,通过分页读取和数据清洗生成结构化数据;第二种是利用Web Scraper API工具,实现自定义配置、自动化抓取及云端存储。两种方法各具优势,适合不同需求和技术水平的团队。同时,文章还提供了专属优惠福利,助力提升数据采集效率,为AI大模型训练提供支持。
1688商品详情API接口指南
1688商品详情API是阿里巴巴为开发者提供的一套接口,用于获取1688平台上商品的详细信息,如商品ID、标题、价格、销量、评价、SKU、库存、主图等。通过注册认证、创建应用、构造请求和处理响应,用户可轻松调用API。其应用场景广泛,包括电商网站同步商品信息、内容管理系统生成商品页面、数据分析工具监测市场动态,以及第三方开发者构建比价或库存管理工具等,助力电商从业者优化销售策略与运营效率。
阿里云 OpenSearch 智能问答版 ➕ DeepSeek R1——打造 B站 UP 主题爆款选题器
阿里云OpenSearch智能问答版+DeepSeek R1,支持多模态数据和联网搜索。以B站up主题爆款选题器为例,打造你的个人专属AI助手,开启你的智能搜索之旅,让AI赋能你的开发! (转载自哔哩哔哩,已获得原作者@老麦的工具库 授权。原视频地址:https://www.bilibili.com/video/BV1M8QmYJEzm/)
根据空域图信息构造飞机航线图以及飞行轨迹模拟matlab仿真
本程序基于MATLAB2022A实现空域图信息的飞机航线图构建与飞行轨迹模拟。空域图是航空领域的重要工具,包含航线、导航点、飞行高度层等信息。程序通过航路网络建模(节点为机场/导航点,边为航线段)构建航线图,并依据飞行规则规划航线。飞行轨迹模拟包括确定起飞点与目的地、设置航路点及飞行高度层,确保飞行安全。完整程序运行结果无水印,适用于航空飞行计划制定与研究。
VMware隐藏黑科技!CentOS安装这个神器效率翻倍 文件互传竟比U盘还快?
### 安装VMtools的作用及步骤 安装VMtools可以实现Windows与CentOS之间的字符串和命令粘贴、文件夹共享等操作。在CentOS中,通过VMware菜单栏选择“VMware Tools”,将下载的压缩包拷贝到`/opt`目录并解压。接着进入终端,使用`./vmware-install.pl`命令完成安装。安装后重启系统,即可实现Windows与CentOS之间的字符和文件共享。具体步骤包括解压文件、启动命令行终端、安装VMtools以及配置文件共享。
大数据& AI 产品月刊【2025年1、2月】
大数据& AI 产品技术月刊【2025年1、2月】,涵盖双月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
1688店铺所有商品API接口(1688API系列)
1688店铺所有商品API接口允许开发者通过输入店铺ID,获取指定店铺内的全部商品信息,包括名称、价格、库存、图片和销售数据等。该接口支持排序和分页参数,返回JSON格式数据,便于解析和应用。Python示例展示了如何使用requests库发送GET请求并处理响应,助力电商数据分析与业务拓展。
基于Big-Bang-Big-Crunch(BBBC)算法的目标函数最小值计算matlab仿真
该程序基于Big-Bang-Big-Crunch (BBBC)算法,在MATLAB2022A中实现目标函数最小值的计算与仿真。通过模拟宇宙大爆炸和大收缩过程,算法在解空间中搜索最优解。程序初始化随机解集,经过扩张和收缩阶段逐步逼近全局最优解,并记录每次迭代的最佳适应度。最终输出最佳解及其对应的目标函数最小值,并绘制收敛曲线展示优化过程。 核心代码实现了主循环、粒子位置更新、适应度评估及最优解更新等功能。程序运行后无水印,提供清晰的结果展示。
【再谈设计模式】备忘录模式~对象状态的守护者
备忘录模式属于行为型设计模式。它的主要目的是在不破坏对象封装性的前提下,捕获并外部化一个对象的内部状态,以便之后可以将该对象恢复到这个状态。原发器(Originator):创建一个备忘录,用于记录当前时刻它的内部状态。原发器还可以使用备忘录来恢复其内部状态。备忘录(Memento):存储原发器对象的内部状态。备忘录应该防止原发器以外的其他对象访问其内部状态。负责人(Caretaker):负责保存备忘录,但不能对备忘录的内容进行操作或检查。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。