多模态RAG实战指南:完整Python代码实现AI同时理解图片、表格和文本
本文探讨了多模态RAG系统的最优实现方案,通过模态特定处理与后期融合技术,在性能、准确性和复杂度间达成平衡。系统包含文档分割、内容提取、HTML转换、语义分块及向量化存储五大模块,有效保留结构和关系信息。相比传统方法,该方案显著提升了复杂查询的检索精度(+23%),并支持灵活升级。文章还介绍了查询处理机制与优势对比,为构建高效多模态RAG系统提供了实践指导。
Python实现时间序列动量策略:波动率标准化让量化交易收益更平稳
时间序列动量策略(TSMOM)是一种基于资产价格趋势的量化交易方法,通过建立多头或空头头寸捕捉市场惯性。然而,传统TSMOM策略因风险敞口不稳定而面临收益波动问题。波动率调整技术通过动态调节头寸规模,维持恒定风险水平,优化了策略表现。本文系统分析了波动率调整TSMOM的原理、实施步骤及优势,强调其在现代量化投资中的重要地位,并探讨关键参数设定与实际应用考量,为投资者提供更平稳的风险管理体验。
深入解析torch.compile:提升PyTorch模型性能、高效解决常见问题
PyTorch 2.0推出的`torch.compile`功能为深度学习模型带来了显著的性能优化能力。本文从实用角度出发,详细介绍了`torch.compile`的核心技巧与应用场景,涵盖模型复杂度评估、可编译组件分析、系统化调试策略及性能优化高级技巧等内容。通过解决图断裂、重编译频繁等问题,并结合分布式训练和NCCL通信优化,开发者可以有效提升日常开发效率与模型性能。文章为PyTorch用户提供了全面的指导,助力充分挖掘`torch.compile`的潜力。
查询加速 MaxQA 功能解读及使用演示
为满足现代数据分析和业务应用中对低延迟的需求,阿里云推出 MaxQA 查询加速功能,显著减少查询响应时间,适用于 BI 场景、交互式分析以及近实时数仓等对延迟要求高且稳定的场景。 本视频为大家介绍MaxQA在性能、稳定性及使用成本上的核心优势以及相较于MCQA1.0的能力升级,还有产品专家实操演示教学。 公测期间可申请100CU(价值15000元)计算资源用于测试(加入钉群申领:87535025714)
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
小红书笔记评论API接口如何使用
小红书作为生活方式分享平台,评论是用户互动的核心形式。通过小红书笔记评论API接口,开发者可高效获取特定笔记下的评论数据(如内容、昵称、时间、点赞数等),用于舆情分析、用户反馈收集和市场调研。请求参数包括`note_id`、`page`、`page_size`、`timestamp`和`sign`,采用HTTP方式调用,返回JSON格式数据,为业务决策提供数据支持。
PyTorchVideo实战:从零开始构建高效视频分类模型
本文详细介绍了基于PyTorchVideo和PyTorch Lightning构建视频分类模型的全流程。通过Kinetics数据集,利用3D ResNet-50实现高效动作识别。教程涵盖数据加载与增强、模型构建及训练流程,结合两大框架优势,简化开发复杂度并提升性能,为视频理解任务提供完整解决方案。
大数据与机器学习:数据驱动的智能时代
本文探讨了大数据与机器学习在数字化时代的融合及其深远影响。大数据作为“新时代的石油”,以其4V特性(体量、多样性、速度、真实性)为机器学习提供燃料,而机器学习通过监督、无监督、强化和深度学习等技术实现数据价值挖掘。两者协同效应显著,推动医疗、金融、零售、制造等行业创新。同时,文章分析了数据隐私、算法偏见、可解释性及能耗等挑战,并展望了边缘计算、联邦学习、AutoML等未来趋势。结语强调技术伦理与实际价值并重,倡导持续学习以把握智能时代机遇。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
PyTabKit:比sklearn更强大的表格数据机器学习框架
PyTabKit是一个专为表格数据设计的新兴机器学习框架,集成了RealMLP等先进深度学习技术与优化的GBDT超参数配置。相比传统Scikit-Learn,PyTabKit通过元级调优的默认参数设置,在无需复杂超参调整的情况下,显著提升中大型数据集的性能表现。其简化API设计、高效训练速度和多模型集成能力,使其成为企业决策与竞赛建模的理想工具。
Python 实战:用 API 接口批量抓取小红书笔记评论,解锁数据采集新姿势
小红书作为社交电商的重要平台,其笔记评论蕴含丰富市场洞察与用户反馈。本文介绍的小红书笔记评论API,可获取指定笔记的评论详情(如内容、点赞数等),支持分页与身份认证。开发者可通过HTTP请求提取数据,以JSON格式返回。附Python调用示例代码,帮助快速上手分析用户互动数据,优化品牌策略与用户体验。
Python 实战!利用 API 接口获取小红书笔记详情的完整攻略
小红书笔记详情API接口帮助商家和数据分析人员获取笔记的详细信息,如标题、内容、作者信息、点赞数等,支持市场趋势与用户反馈分析。接口通过HTTP GET/POST方式请求,需提供`note_id`和`access_token`参数,返回JSON格式数据。以下是Python示例代码,展示如何调用该接口获取数据。使用时请遵守平台规范与法律法规。
CLIMB自举框架:基于语义聚类的迭代数据混合优化及其在LLM预训练中的应用
英伟达提出的CLIMB框架,是一种自动化优化大型语言模型(LLM)预训练数据混合的创新方法。通过语义嵌入与聚类技术,CLIMB能系统地发现、评估并优化数据混合策略,无需人工干预。该框架包含数据预处理、迭代自举及最优权重确定三大阶段,结合小型代理模型与性能预测器,高效搜索最佳数据比例。实验表明,基于CLIMB优化的数据混合训练的模型,在多项推理任务中显著超越现有方法,展现出卓越性能。此外,研究还构建了高质量的ClimbMix数据集,进一步验证了框架的有效性。
深入研究:1688商品评论API详解
本文介绍如何通过第三方数据服务平台获取1688商品评论数据。由于1688官方未提供通用评论API,商家和研究人员可借助第三方接口分析消费者反馈、优化产品与服务。使用时需注册账号获取API Key,并通过必要参数(如商品ID、页码等)调用接口,返回JSON格式的评论数据。文中提供了Python示例代码,利用`requests`库发送请求,帮助用户快速上手,注意根据实际平台调整API地址和参数。
Ventoy 是一款开源的多系统启动U盘工具
Ventoy是一款开源多系统启动U盘工具,支持Legacy BIOS和UEFI模式,可直接启动多个ISO文件(无需解压),兼容Windows、Linux等系统。只需下载安装Ventoy到U盘,拷贝ISO文件即可实现多系统启动。官网:https://www.ventoy.net,GitHub:https://github.com/ventoy/Ventoy。制作需8GB以上U盘及Win7以上系统。
轻量级爬虫框架Feapder入门:快速搭建企业级数据管道
本教程基于Feapder框架,讲解如何构建轻量级爬虫采集豆瓣电影数据。通过配置代理IP、Cookie与User-Agent,实现企业级数据管道能力,包括动态请求与信息提取(如电影名称、导演、演员等)。适合具备Python基础及爬虫原理知识的读者,提供从环境搭建到代码实现的完整流程,并分析常见错误与解决方法,助力高效开发。
本地化部署DeepSeek-R1蒸馏大模型:基于飞桨PaddleNLP 3.0的实战指南
本文基于飞桨框架3.0,详细介绍了在Docker环境下部署DeepSeek-R1-Distill-Llama-8B蒸馏模型的全流程。飞桨3.0通过动静统一自动并行、训推一体设计等特性,显著优化大模型的推理性能与资源利用效率。实战中,借助INT8量化和自动化工具,模型在8卡A100上仅需60GB显存即可运行,推理耗时约2.8-3.2秒,吞吐率达10-12 tokens/s。本文为国产大模型的高效本地部署提供了工程参考,适配多场景需求。
百观科技基于阿里云 EMR 的数据湖实践分享
百观科技为应对海量复杂数据处理的算力与成本挑战,基于阿里云 EMR 构建数据湖。EMR 依托高可用的 OSS 存储、开箱即用的 Hadoop/Spark/Iceberg 等开源技术生态及弹性调度,实现数据接入、清洗、聚合与分析全流程。通过 DLF 与 Iceberg 的优化、阶梯式弹性调度(资源利用率提升至70%)及倚天 ARM 机型搭配 EMR Trino 方案,兼顾性能与成本,支撑数据分析需求,降低算力成本。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
体育应用怎么通过API接口接入数据源与直播源
本文介绍了体育类应用接入数据源与直播源的API接口方案。主要包括:1) 数据源API接入,涉及选择提供商、接入流程及常见数据类型;2) 直播源接入,涵盖直播源类型、提供商和技术方案;3) 技术实现要点,如数据缓存、实时更新机制和安全性考虑;4) 成本优化建议。附有HLS播放示例及Node.js完整集成代码,帮助开发者高效实现体育应用功能。
基于QwQ-32B+Hologres+PAI搭建 RAG 检索增强对话系统
本文介绍如何使用PAI-EAS部署基于QwQ大模型的RAG服务,并关联Hologres引擎实例。Hologres与达摩院自研高性能向量计算软件库Proxima深度整合,支持高性能、低延时、简单易用的向量计算能力。通过PAI-EAS,用户可以一键部署集成大语言模型(LLM)和检索增强生成(RAG)技术的对话系统服务,显著缩短部署时间并提升问答质量。具体步骤包括准备Hologres向量检索库、部署RAG服务、通过WebUI页面进行模型推理验证及API调用验证。Hologres支持高性能向量计算,适用于复杂任务的动态决策,帮助克服大模型在领域知识局限、信息更新滞后和误导性输出等方面的挑战。
VMware隐藏黑科技!CentOS安装这个神器效率翻倍 文件互传竟比U盘还快?
### 安装VMtools的作用及步骤 安装VMtools可以实现Windows与CentOS之间的字符串和命令粘贴、文件夹共享等操作。在CentOS中,通过VMware菜单栏选择“VMware Tools”,将下载的压缩包拷贝到`/opt`目录并解压。接着进入终端,使用`./vmware-install.pl`命令完成安装。安装后重启系统,即可实现Windows与CentOS之间的字符和文件共享。具体步骤包括解压文件、启动命令行终端、安装VMtools以及配置文件共享。
HTTP代理服务器对速度提升有何作用?
在信息化时代,网络成为生活不可或缺的一部分。HTTP代理服务器位于客户端与服务器之间,通过数据压缩、缓存机制和路由优化等方式,有效提高数据传输速度并保护个人信息安全。使用91HTTP等工具,用户可在业务需求中获得更快更安全的网络体验。
工业零件不良率、残次率的智能数据分析和数字化管理
在传统工业领域,我们通过引入DataV-Note平台,成功实现了企业智能数据分析与数字化管理的初步目标。这一平台不仅显著提升了数据处理的效率和准确性,还为我们的日常运营提供了更加科学、直观的决策支持。然而,这只是智能化转型的第一步。展望未来,我们期望能够进一步深化技术应用,推动企业管理向更高层次的智能化方向迈进。通过持续优化数据分析能力、完善数字化管理体系,我们致力于将企业的运营模式从传统的经验驱动转变为数据驱动,从而全面提升管理效能和市场竞争力,为企业创造更大的长期价值
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
基于DeepSeek的智能客服系统优化与扩展:提升性能与功能
随着用户量增长和业务扩展,系统可能面临性能瓶颈和功能不足。本文探讨了性能优化(如数据库、缓存、异步处理)、功能扩展(如多语言支持、多渠道集成、智能推荐)及持续改进(如用户反馈、A/B测试、数据分析)的方法,以提升用户体验和系统效率。通过这些措施,可以打造更高效、更智能的客服系统。
淘宝商品详情 API 接口(淘宝 API 系列)
淘宝商品详情API接口为电商从业者、数据分析师及开发者提供获取淘宝商品详细信息的便捷途径。该接口涵盖商品名称、价格、图片、描述、用户评价等多维度数据,助力市场分析与应用开发。严格的权限管理和灵活的请求方式确保数据安全和高效获取。Python示例代码展示了如何通过API获取特定商品的详情信息,包括构建请求参数、生成签名及处理响应结果。 供稿:Taobaoapi2014 接口特点: - **丰富的数据内容**:提供商品基础信息、价格、图片、描述及用户评价。 - **多种请求方式**:支持GET和POST请求,灵活设置参数满足不同需求。
客户案例 | 阿里云向量检索服务Milvus版助力中免日上搭建在线推荐系统
阿里云向量检索服务Milvus版对比开源版本具有性能高、稳定性强、管控功能齐全等优势,为中免日上技术团队在电商领域搭建推荐系统提供了强有力的支持。阿里云Milvus不仅具备良好的可观测性,而且弹性扩缩能力能够适应日益增长的数据规模,同时版本平滑升级也能让技术专家更便捷、无痛地升级和体验新版本的产品能力。
全网首发 | PAI Model Gallery一键部署阶跃星辰Step-Video-T2V、Step-Audio-Chat模型
Step-Video-T2V 是一个最先进的 (SoTA) 文本转视频预训练模型,具有 300 亿个参数,能够生成高达 204 帧的视频;Step-Audio 则是行业内首个产品级的开源语音交互模型,通过结合 130B 参数的大语言模型,语音识别模型与语音合成模型,实现了端到端的文本、语音对话生成,能和用户自然地进行高质量对话。PAI Model Gallery 已支持阶跃星辰最新发布的 Step-Video-T2V 文生视频模型与 Step-Audio-Chat 大语言模型的一键部署,本文将详细介绍具体操作步骤。
数据工程视角:为什么公司会有几百个含义模糊的“DAU”指标?
除了提升开发效率、降低资源成本,更能保障决策一致性、赋能业务敏捷分析,并构成未来 AI 应用不可或缺的 AI-Ready 数据底座
智启未来:2026年,AI从“技术工具”到“共生文明”的跨代元年
2026年,“会基础设施”范式跃迁开启人类与非生物智能共治的“第二个起源”。AI从工具升维为文明要素:技术迈入工业级确定性应用,能力下沉至个体;产业全链重构,制度启动动态合规、权责厘清与红利再分配;文明契约转向生态共生、意义赋予与思维共同体培育——未来在制度与共识之中。
1688宝贝详情数据接口实战—B 端视角下的竞品(供应商)数据拆解全指南
本指南面向B端企业,详解如何通过1688宝贝详情API实现竞品与供应商数据化拆解。涵盖API接入、字段商业价值映射(价格梯度、MOQ、SKU库存、资质认证、物流履约、销量反馈等)、实战分析框架及合规要点,助力跨境铺货、批发选品、定价优化与供应链决策,真正将API转化为业务增长引擎。(239字)
1688商品列表API接口快速上手指南
本文介绍如何通过1688开放平台官方API,合规高效地获取店铺商品列表数据。以`item_search_shop`接口为例,详解请求参数、签名生成规则与调用限制,结合Python实战实现稳定采集。强调签名安全、频率控制与数据合规使用,助力B2B电商分析、选品监控等场景高效落地。(238字)
1688商品详情API接口使用指南
1688商品详情API(1688.item_get)是阿里1688开放平台核心接口,支持通过商品ID获取50+字段的全量信息,涵盖标题、价格、SKU、库存、图文、批发规则及商家资质等,适用于ERP同步、比价、跨境铺货等B2B场景。需实名认证并创建应用获取app_key与app_secret,接口仅返回JSON格式数据,是对接1688生态的关键技术通道。(239字)
淘宝商品评论API使用指南
淘宝商品评论API可批量获取指定商品的评论数据,支持筛选评价类型、分页查询及提取评论内容、评分、晒图、买家信息等。需入驻淘宝开放平台,获取AppKey/AppSecret,调用接口taobao.item.review.get,通过签名验证,实现结构化数据采集,适用于电商分析与口碑监控。(239字)
基于深度学习的暴力行为识别系统
随着城市化进程加快,传统安防难以应对暴力事件。基于深度学习的暴力行为识别系统,融合YOLOv8、Python与多模态数据,实现高精度、实时检测,提升公共安全响应效率,助力智慧城市建设。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。