Apache InLong:构建10万亿级数据管道的全场景集成框架

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: Apache InLong(应龙)是一站式、全场景海量数据集成框架,支持数据接入、同步与订阅,具备自动、安全、可靠和高性能的数据传输能力。源自腾讯大数据团队,现为 Apache 顶级项目,广泛应用于广告、支付、社交等多个领域,助力企业构建高效数据分析与应用体系。

 一、关于 InLong

Apache InLong(应龙)是一站式、全场景的海量数据集成框架,同时支持数据接入、数据同步和数据订阅,提供自动、安全、可靠和高性能的数据传输能力,方便业务构建基于流式的数据分析、建模和应用。 InLong 项目原名 TubeMQ ,专注于高性能、低成本的消息队列服务。为了进一步释放 TubeMQ 周边的生态能力,我们将项目升级为 InLong,专注打造一站式、全场景海量数据集成框架。 Apache InLong 依托 10 万亿级别的数据接入和处理能力,整合了数据采集汇聚存储分拣数据处理全流程,拥有简单易用、灵活扩展、稳定可靠等特性。 该项目最初于 2019 年 11 月由腾讯大数据团队捐献到 Apache 孵化器,2022 年 6 月正式毕业成为 Apache 顶级项目。目前 InLong 正广泛应用于广告、支付、社交、游戏、人工智能等各个行业领域,为多领域客户提供高效化便捷化服务。

二、特性

1.简单易用

基于 SaaS 模式对外服务,用户只需要按主题发布和订阅数据即可完成数据的上报,传输和分发工作

2.稳定可靠

系统源于实际的线上系统,服务上十万亿级的高性能及上千亿级的高可靠数据数据流量,系统稳定可靠

3.功能完善

支持各种类型的数据接入方式,多种不同类型的 MQ 集成,以及基于配置规则的实时数据 ETL 和数据分拣落地,并支持以可插拔方式扩展系统能力

4.服务集成

支持统一的系统监控、告警,以及细粒度的数据指标呈现,对于管道的运行情况,以数据主题为核心的数据运营情况,汇总在统一的数据指标平台,并支持通过业务设置的告警信息进行异常告警提醒

5.灵活扩展

全链条上的各个模块基于协议以可插拔方式组成服务,业务可根据自身需要进行组件替换和功能扩展

三、架构

标准架构:包含 InLong Agent、Manager、MQ、Sort、Dashboard 等所有 InLong 组件,同时支持`数据接入`、`数据同步`和`数据订阅`。

image.gif 编辑

四、模块

 

Apache InLong 服务于数据采集到落地的整个生命周期,按数据的不同阶段提供不同的处理模块,主要包括:

  • inlong-agent,数据采集服务,包括文件采集、DB 采集等。
  • inlong-dataproxy,一个基于 Flume-ng 的 Proxy 组件,支持数据发送阻塞和落盘重发,拥有将接收到的数据转发到不同 MQ(消息队列)的能力。
  • inlong-tubemq,腾讯自研的消息队列服务,专注于大数据场景下海量数据的高性能存储和传输,在海量实践和低成本方面有着良好的核心优势。
  • inlong-sort,对从不同的 MQ 消费到的数据进行 ETL 处理,然后汇聚并写入 Hive、ClickHouse、HBase、Iceberg、Hudi 等存储系统。
  • inlong-manager,提供完整的数据服务管控能力,包括元数据、任务流、权限,OpenAPI 等。
  • inlong-dashboard,用于管理数据集成任务的前端页面,简化整个 InLong 管控平台的使用。
  • inlong-audit,对 InLong 系统的 Agent、DataProxy、Sort 模块的入流量、出流量进行实时审计对账。

目前支持数据节点:

image.gif 编辑 image.gif 编辑


五、基本概念:

image.png


六、总结:

核心优势对比

维度 InLong Kafka+Flink Pulsar
端到端体验 开箱即用 多组件集成 需定制开发
运维成本 可视化管控台 跨系统协调 专业团队维护
传输成本 $0.23/GB $1.7/GB $0.9/GB
协议支持 ★★★★☆ (20+) ★★★☆☆ (10+) ★★★★☆ (15+)

三大技术支柱

支柱 能力说明 关键技术实现
TubeMQ引擎 千万级QPS消息队列 零拷贝传输/分层存储/动态负载均衡
统一接入层 支持20+数据源与目的地 SDK/Agent/Sidecar多模式植入
可视化管控台 全链路可观测性 数据血缘追踪/智能预警/流量热力图

定位:一站式、全场景的海量数据集成操作系统

使命:为企业构建高吞吐、低延迟、低成本的数据流通管道

核心理念Connect Once, Serve Everywhere(一次接入,全场景服务)

Apache InLong 是数据洪流时代的"应龙",以腾讯10万亿级实战经验为基石,通过TubeMQ引擎突破性能瓶颈,凭借全栈式集成能力简化数据工程复杂度。其价值不仅在于技术指标的领先性,更在于重新定义了企业构建数据管道的成本范式——让每GB数据的流动成本降低一个数量级,为实时智能业务提供底层引擎动力。

相关文章
|
27天前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
334 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
|
12天前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
142 12
|
2月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
160 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
2月前
|
人工智能 自然语言处理 安全
Python构建MCP服务器:从工具封装到AI集成的全流程实践
MCP协议为AI提供标准化工具调用接口,助力模型高效操作现实世界。
444 1
|
2月前
|
供应链 监控 搜索推荐
35页PPT|零售行业自助数据分析方法论:指标体系构建平台集成、会员与商品精细化运营实践
在零售行业环境剧变的背景下,传统“人找货”模式正被“货找人”取代。消费者需求日益个性化,购买路径多元化,企业亟需构建统一的指标体系,借助BI平台实现数据驱动的精细化运营。本文从指标体系构建、平台集成到会员与商品运营实践,系统梳理零售经营分析的方法论,助力企业实现敏捷决策与业务闭环。
35页PPT|零售行业自助数据分析方法论:指标体系构建平台集成、会员与商品精细化运营实践
|
2月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1018 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
9月前
|
容灾 安全 关系型数据库
数据传输服务DTS:敏捷弹性构建企业数据容灾和集成
数据传输服务DTS提供全球覆盖、企业级跨境数据传输和智能化服务,助力企业敏捷构建数据容灾与集成。DTS支持35种数据源,实现全球化数据托管与安全传输,帮助企业快速出海并高效运营。瑶池数据库的全球容灾、多活及集成方案,结合DTS的Serverless和Insight功能,大幅提升数据传输效率与智能管理水平。特邀客户稿定分享了使用DTS加速全球业务布局的成功经验,展示DTS在数据分发、容灾多活等方面的优势。
181 0
|
6月前
|
存储 SQL 关系型数据库
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
拉卡拉早期基于 Lambda 架构构建数据系统面临存储成本高、实时写入性能差、复杂查询耗时久、组件维护复杂等问题。为此,拉卡拉选择使用 Apache Doris 替换 Elasticsearch、Hive、Hbase、TiDB、Oracle / MySQL 等组件,实现了 OLAP 引擎的统一、查询性能提升 15 倍、资源减少 52% 的显著成效。
215 6
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
|
人工智能 定位技术 API
旅行规划太难做?5 分钟构建智能Agent,集成地图 MCP Server
MCP(Model Coordination Protocol)是由Anthropic公司提出的开源协议,旨在通过标准化交互方式解决AI大模型与外部数据源、工具的集成难题。阿里云百炼平台上线了业界首个全生命周期MCP服务,大幅降低Agent开发门槛,实现5分钟快速搭建智能体应用。本文介绍基于百炼平台“模型即选即用+MCP服务”模式,详细展示了如何通过集成高德地图MCP Server为智能体添加地图信息与天气查询能力,构建全面的旅行规划助手。方案涵盖智能体创建、模型配置、指令与技能设置等步骤,并提供清理资源的指导以避免费用产生。
|
8月前
|
SQL 缓存 数据处理
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
394 3
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)

推荐镜像

更多