AI之NLP:自然语言处理技术简介(是什么/学什么/怎么用)、常用算法、经典案例之详细攻略(建议收藏)

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: AI之NLP:自然语言处理技术简介(是什么/学什么/怎么用)、常用算法、经典案例之详细攻略(建议收藏)


目录

NLP是什么?

1、NLP前置技术解析

2、python中NLP技术相关库

3、NLP案例实践

3.1、机器翻译

3.2、语音识别(Automatic Speech Recognition)

3.3、中文分词

3.4、词件标注与命名实体识别

3.5、关键词提取算法

3.6、句法分析

3.7、文本向量化

3.8、文本分类

3.9、情感分析技术

3.10、Solr搜索引擎

3.11、NLP中常用的机器学习算法

3.12、NLP中常用的深度学习算法

NLP的经典案例

1、基础案例

2、进阶案例


NLP是什么?

NLP是一门融语言学、计算机科学、数学于一体的科学。主要内容包括如下:

  • 如何用NLP与语言学的关键概念来描述和分析语言
  • NLP中的数学结构和算法是如何实现的
  • 自然语言处理目前主流的技术与方法论
  • 信息检索技术与大数据应用

推荐文章

NLP:自然语言处理技术的简介、发展历史、案例应用之详细攻略

Paper之ACL&EMNLP:2009年~2019年ACL计算语言学协会年会&EMNLP自然语言处理的经验方法会议历年最佳论文简介及其解读

NLP:《NLP Year in Review 2019&NLP_2019_Highlights》2019年自然语言处理领域重要进展回顾及其解读

Dataset:数据集集合(NLP方向数据集)——常见的自然语言处理数据集大集合(建议收藏,持续更新)

1、NLP前置技术解析

搭建Python开发环境

正则表达式在NLP中的基本应用

Numpy使用详解

2、python中NLP技术相关库

  • word2vec
  • nltk
  • jieba

Py之SnowNLP:SnowNLP中文处理包的简介、安装、使用方法、代码实现之详细攻略

NLP之word2vec:word2vec简介、安装、使用方法之详细攻略

3、NLP案例实践

3.1、机器翻译

3.2、语音识别(Automatic Speech Recognition)

NLP之ASR:语音识别技术(Automatic Speech Recognition)的简介、发展历史、案例应用之详细攻略

NLP之ASR:基于pyaudio利用python进行语音生成、语音识别总结及其案例详细攻略

NLP之ASR:基于python和机器学习算法带你玩转的语音实时识别技术

3.3、中文分词

中文分词简介

  • 规则分词
  • 统计分词
  • 混合分词

中文分词工具—Jieba

3.4、词件标注与命名实体识别

词性标注

命名实体识别

实体识别(NER)

3.5、关键词提取算法

摘要提取

关键词提取技术概述

TF/IDF

TextRank

LSA/LSI/LDA算法

实战提取文本关键词

推荐文章

NLP:基于textrank4zh库对文本实现提取文本关键词、文本关键短语和文本摘要

NLP:基于snownlp库对文本实现提取文本关键词和文本摘要

NLP:基于nltk和jieba库对文本实现提取文本摘要(两种方法实现:top_n_summary和mean_scored_summary)

 

3.6、句法分析

文本分析

句法分析概述

句法分析的常用方法

使用Stanford Parser的PCFG算法进行句法分析

3.7、文本向量化

文本向量化概述

向量化算法woed2vec

向量化算法doc2vec、str2vec

网页文本向量化

推荐文章

NLP:利用DictVectorizer对使用字典存储的数据进行特征抽取与向量化

NLP之word2vec:利用 Wikipedia Text(中文维基百科)语料+Word2vec工具来训练简体中文词向量

3.8、文本分类

如:垃圾邮件分类、情感分析。

3.9、情感分析技术

情感分析应用

情感分析基本方法

实战电影评论情感分析

推荐文章

NLP之TEA:自然语言处理之文本情感分析的简介、算法、应用、实现流程方法、案例应用之详细攻略

NLP之情感分析:基于python编程(jieba库)实现中文文本情感分析(得到的是情感评分)

3.10、Solr搜索引擎

全文检索的原理

Solr简介与部署

Solr后台管理描述

配置Schema

Solr管理索引库

3.11、NLP中常用的机器学习算法

分类器方法

无监督学习的文本聚类

文本分类:中文垃圾邮件分类

文本聚类:用k-means对豆瓣读书数据聚类

推荐文章

NLP之TM之LDA:利用LDA算法瞬时掌握文档的主题内容—利用希拉里邮件数据集训练LDA模型并对新文本进行主题分类

3.12、NLP中常用的深度学习算法

神经网络模型

多输出层模型

反向传播算法

最优化算法

丢弃法

激活函数

实现BP算法

词嵌入算法

训练词向量实践

朴素Vanilla-RNN

LSTM网络

Attention机制

Seq2Seq模型

图模型

深度学习平台

问答机器人

推荐文章

NLP之WE之CBOW&Skip-Gram:CBOW&Skip-Gram算法概念相关论文、原理配图、关键步骤之详细攻略

NLP之WE之Skip-Gram:基于TF利用Skip-Gram模型实现词嵌入并进行可视化、过程全记录

 

NLP的经典案例

1、基础案例

NLP:两种方法(自定义函数和封装函数)实现提取两人对话内容(***分隔txt文档),并各自保存为txt文档

NLP之TopicModel:朴素贝叶斯NB的先验概率之Dirichlet分布的应用

NLP之TM:基于gensim库调用20newsgr学习doc-topic分布并保存为train-svm-lda.txt、test-svm-lda.txt

NLP之TFTS读入数据:TF之TFTS读入时间序列数据的几种方法

NLP之WordCloud:基于jieba+matplotlib库对一段文本生成词云图~~情人节最好的礼物(给你一张过去的词云图,看看那时我们的爱情)

2、进阶案例

NLP之TEA:基于SnowNLP实现自然语言处理之对输入文本进行情感分析(分词→词性标注→拼音&简繁转换→情感分析→测试)

ML之NB:(NLP)基于sklearn库利用不同语种数据集训练NB(朴素贝叶斯)算法,对新语种进行语种检测

NLP之BoW&NLTK:自然语言处理中常用的技术——词袋法Bow、NLTK库

NLP之词向量:利用word2vec对20类新闻文本数据集进行词向量训练、测试(某个单词的相关词汇)

NLP之NB&GBT:基于朴素贝叶斯(count/tfidf+网格搜索+4fCrva)、梯度提升树(w2c+网格搜索+4fCrva)算法对IMDB影评数据集进行文本情感分析(情感二分类预测)

NLP:NLP领域没有最强,只有更强的模型——GPT-3的简介、安装、使用方法之详细攻略

相关文章
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【8月更文挑战第28天】本文将探讨AI技术在自然语言处理(NLP)领域的应用及其面临的挑战。我们将通过实例和代码示例,展示AI如何帮助机器理解和生成人类语言,并讨论在这一过程中遇到的主要问题和可能的解决方案。
|
14天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【8月更文挑战第27天】本文将探讨人工智能技术在自然语言处理领域的应用,包括语音识别、机器翻译、情感分析等方面。我们将通过实例展示AI如何改变我们与计算机的交互方式,并讨论其在未来发展的潜力。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用与挑战
【8月更文挑战第26天】本文将探讨AI技术在自然语言处理(NLP)领域的应用和面临的挑战。我们将通过实例分析,展示AI如何帮助机器理解和生成人类语言,并讨论当前技术的局限性和未来发展的可能性。
|
17天前
|
人工智能 自然语言处理 语音技术
AI在自然语言处理中的应用
【8月更文挑战第24天】人工智能(AI)已经渗透到我们生活的方方面面,其中自然语言处理(NLP)是AI的一个重要应用领域。本文将介绍NLP的基本概念,以及AI如何帮助计算机理解和生成人类语言。我们将通过一个简单的代码示例,展示如何使用Python和NLTK库进行文本分析。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【8月更文挑战第31天】本文介绍了AI技术在自然语言处理(NLP)中的应用,包括文本分类、情感分析、机器翻译和语音识别等。通过代码示例,展示了如何使用Python和相关库实现这些功能。文章还探讨了AI技术在NLP领域的挑战和未来发展趋势。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【8月更文挑战第31天】本文将探讨AI技术在自然语言处理中的应用。我们将从基本概念开始,逐步深入到具体的应用案例和技术实现。无论你是AI技术的初学者,还是已经在该领域有一定经验的专业人士,都可以从本文中获得有价值的信息。让我们一起探索AI技术如何改变我们理解和使用自然语言的方式吧!
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在自然语言处理中的应用
【8月更文挑战第30天】本文介绍了人工智能(AI)技术在自然语言处理(NLP)领域的应用,包括语音识别、机器翻译、情感分析等方面。通过代码示例和案例分析,展示了AI技术在NLP中的优势和挑战。
|
17天前
|
人工智能 自然语言处理 API
AI技术在自然语言处理中的应用
【8月更文挑战第24天】本文将探讨AI技术在自然语言处理(NLP)领域的应用。我们将从基础概念入手,逐步深入到AI技术如何改变NLP的面貌。文章将展示代码示例,帮助读者更好地理解AI技术在NLP中的应用。
|
5天前
|
算法 BI Serverless
基于鱼群算法的散热片形状优化matlab仿真
本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
|
5天前
|
算法 数据可视化
基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。

热门文章

最新文章

下一篇
DDNS