②Python教学机器人带你学会驾考科目三——内附数据分析源码与科三干货【技术与生活】

简介: Python教学机器人带你学会驾考科目三——内附数据分析源码与科三干货【技术与生活】

学车年龄主要集中在18-29岁之间,为学车主力军,占58.71%的学车份额。


这意味着越来越多的年轻人走在学车的道路上,学车趋于年轻化。


驾培机构只要抓住80、90这一年龄段学车市场,也就抓住了近80%的份额。


不同的年龄段的人学车对技能接受能力不同,有快有慢,这就需要驾培机构在保证合格率的前提下,因材施教,对分层年龄段制定出创新贴切的教学计划,将以往“被动式”服务转变为“主动式服务”。

# -*- coding :  utf-8 -*-
# @Time      :  2021/1/29 17:03
# @author    :  王小王
# @Software  :  PyCharm
# @File      :  柱状图-主题可选择.py
# @CSDN      :  https://blog.csdn.net/weixin_47723732
from pyecharts.charts import Bar
from pyecharts.globals import ThemeType
from pyecharts import options as opts
from pyecharts.charts import Bar
import pymysql
# conn = pymysql.connect(
#                 host='192.168.190.135',
#                 user='root',
#                 password='2211',
#                 database='whw',
#                 port=3306,
#                 charset='utf8'
# )
# cur = conn.cursor()
# sql = 'select logdate as `日期`,pv as `浏览量`,reguser as `注册用户数`,ip as `独立IP数量`,jumper as `跳出用户数` from `whw_logs_stat`;'
# cur.execute(sql)
#
# data = cur.fetchall()
# print(data)
#
# x_1=list(data[0][1:])
# x_2=list(data[1][1:])
# print(x_1)
# print(x_2)
#
# a=[]
# for x in data:
#     a.append(x[0])
# a_1=a[0]
# a_2=a[1]
# print(a_1)
# print(a_2)
#
# conn.close()
#
# data_0=['浏览量', '注册用户', '独立IP数', '跳出用户数']
x=["18-19岁","20-29岁","30-39岁","40-45岁","46-50岁","50岁以上"]
y=[15.15,14.84,16.65,18.48,18.72,19.10]
z=[8.03,8.79,10.33,11.42,11.75,13.14]
c = (
    Bar({"theme": ThemeType.MACARONS})
    .add_xaxis(x)
    .add_yaxis("科目二", y)    #gap="0%"   这个可设置柱状图之间的距离
    .add_yaxis("科目三", z)    #gap="0%"   这个可设置柱状图之间的距离
    .set_global_opts(title_opts={"text": "科目二、科目三合格通过学时按年龄段统计", "subtext": ""},     #该标题的颜色跟随主题
                     # 该标题默认为黑体显示,一般作为显示常态
                     # title_opts=opts.TitleOpts(title="标题")
                     xaxis_opts=opts.AxisOpts(
                         name='年龄段',
                         name_location='middle',
                         name_gap=20,  # 标签与轴线之间的距离,默认为20,最好不要设置20
                         name_textstyle_opts=opts.TextStyleOpts(
                             font_family='Times New Roman',
                             font_size=16  # 标签字体大小
                         )),
                     yaxis_opts=opts.AxisOpts(
                         name='小时',
                         name_location='middle',
                         name_gap=20,
                         name_textstyle_opts=opts.TextStyleOpts(
                             font_family='Times New Roman',
                             font_size=16
                             # font_weight='bolder',
                         )),
                    # datazoom_opts=opts.DataZoomOpts(type_="inside"),  #鼠标可以滑动控制
                     # toolbox_opts=opts.ToolboxOpts()  # 工具选项
                    # brush_opts=opts.BrushOpts()       #可以保存选择
    )
    .render("简单柱状图.html")
)
print("图表已生成!请查收!")

image.png


通过科目二、科目三合格通过学时按年龄段统计分析得出:


①结合分析图,客观的反应出30岁以前是学车黄金年龄。如果你正处于该阶段还没有驾照的话,是时候报名学车了。


②20至50岁,通过科目合格花费学时成上升趋势,即年龄越大通过科目合格所花费的学时就越多。


image.png


从以上数据统计得出:


①男性通过科目二、三所花费学时比女性的要高;


②无论男女,科目三合格所花费学时比科目二少;


③科目二为驾考阶段花费学时最多的,也是整个驾考过程中最难的阶段。

# -*- coding :  utf-8 -*-
# @Time      :  2021/1/29 18:47
# @author    :  王小王
# @Software  :  PyCharm
# @File      :  水晶柱状图.py
# @CSDN      :  https://blog.csdn.net/weixin_47723732
from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.commons.utils import JsCode
data_x = ['男性科二', '女性科二', '男性科三', '女性科三']
data_y = [16.96, 15.26, 11.14, 8.79]
c = (
    Bar()
        .add_xaxis(data_x)
        .add_yaxis("小时", data_y, category_gap="60%")
        .set_series_opts(
        itemstyle_opts={
            "normal": {
                "color": JsCode(
                    """new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: 'rgba(0, 244, 255, 1)'
            }, {
                offset: 1,
                color: 'rgba(0, 77, 167, 1)'
            }], false)"""
                ),
                "barBorderRadius": [30, 30, 30, 30],
                "shadowColor": "rgb(0, 160, 221)",
            }
        }
    )
        .set_global_opts(title_opts=opts.TitleOpts(title="男女科目合格学时统计"),
                         xaxis_opts=opts.AxisOpts(
                             name='',
                             name_location='middle',
                             name_gap=30,  # 标签与轴线之间的距离,默认为20,最好不要设置20
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16  # 标签字体大小
                             )),
                         yaxis_opts=opts.AxisOpts(
                             name='小时',
                             name_location='middle',
                             name_gap=30,
                             name_textstyle_opts=opts.TextStyleOpts(
                                 font_family='Times New Roman',
                                 font_size=16
                                 # font_weight='bolder',
                             )),
                         # toolbox_opts=opts.ToolboxOpts()  # 工具选项
                         )
        .render("水晶柱状图.html")
)



相关文章
|
5月前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
299 3
|
5月前
|
人工智能 数据安全/隐私保护 异构计算
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
633 8
桌面版exe安装和Python命令行安装2种方法详细讲解图片去水印AI源码私有化部署Lama-Cleaner安装使用方法-优雅草卓伊凡
|
4月前
|
数据可视化 大数据 关系型数据库
基于python大数据技术的医疗数据分析与研究
在数字化时代,医疗数据呈爆炸式增长,涵盖患者信息、检查指标、生活方式等。大数据技术助力疾病预测、资源优化与智慧医疗发展,结合Python、MySQL与B/S架构,推动医疗系统高效实现。
|
5月前
|
机器学习/深度学习 数据采集 算法
基于mediapipe深度学习的运动人体姿态提取系统python源码
本内容介绍了基于Mediapipe的人体姿态提取算法。包含算法运行效果图、软件版本说明、核心代码及详细理论解析。Mediapipe通过预训练模型检测人体关键点,并利用部分亲和场(PAFs)构建姿态骨架,具有模块化架构,支持高效灵活的数据处理流程。
|
5月前
|
数据可视化 数据挖掘 大数据
基于python大数据的水文数据分析可视化系统
本研究针对水文数据分析中的整合难、分析单一和可视化不足等问题,提出构建基于Python的水文数据分析可视化系统。通过整合多源数据,结合大数据、云计算与人工智能技术,实现水文数据的高效处理、深度挖掘与直观展示,为水资源管理、防洪减灾和生态保护提供科学决策支持,具有重要的应用价值和社会意义。
|
6月前
|
存储 数据挖掘 大数据
基于python大数据的用户行为数据分析系统
本系统基于Python大数据技术,深入研究用户行为数据分析,结合Pandas、NumPy等工具提升数据处理效率,利用B/S架构与MySQL数据库实现高效存储与访问。研究涵盖技术背景、学术与商业意义、国内外研究现状及PyCharm、Python语言等关键技术,助力企业精准营销与产品优化,具有广泛的应用前景与社会价值。
|
5月前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
6月前
|
并行计算 算法 Java
Python3解释器深度解析与实战教程:从源码到性能优化的全路径探索
Python解释器不止CPython,还包括PyPy、MicroPython、GraalVM等,各具特色,适用于不同场景。本文深入解析Python解释器的工作原理、内存管理机制、GIL限制及其优化策略,并介绍性能调优工具链及未来发展方向,助力开发者提升Python应用性能。
392 0

推荐镜像

更多