SA实战 ·《SpringCloud Alibaba实战》第24章-分布式事务:分布式事务核心原理与Seata介绍

本文涉及的产品
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
日志服务 SLS,月写入数据量 50GB 1个月
简介: 大家好,我是冰河~~❝一不小心《SpringCloud Alibaba实战》专栏都更新到第24章了,再不上车就跟不上了,小伙伴们快跟上啊!注意:本项目完整源码加入 「冰河技术」 知识星球即可获取,文末有入场方式。Seata相关的内容来自Seata官网。链接:https://seata.io/zh-cn/docs/overview/what-is-seata.html

前文回顾

在《SpringCloud Alibaba实战》专栏前面的文章中,我们实现了用户微服务、商品微服务和订单微服务之间的远程调用,并且实现了服务调用的负载均衡。也基于阿里开源的Sentinel实现了服务的限流与容错,并详细介绍了Sentinel的核心技术与配置规则。简单介绍了服务网关,并对SpringCloud Gateway的核心架构进行了简要说明,也在项目中整合了SpringCloud Gateway网关实现了通过网关访问后端微服务。同时,也基于SpringCloud Gateway整合Sentinel实现了网关的限流功能,详细介绍了SpringCloud Gateway网关的核心技术。在链路追踪章节,我们开始简单介绍了分布式链路追踪技术与解决方案,随后在项目中整合Sleuth实现了链路追踪,并使用Sleuth整合ZipKin实现了分布式链路追踪的可视化 。

在消息服务章节,我们介绍了MQ的使用场景,引入MQ后的注意事项以及MQ的选型对比,在项目中整合了RocketMQ,并给大家介绍了RocketMQ的核心技术。

在服务配置章节,我们首先介绍了服务配置与Nacos作为配置中心的相关概念,并在项目中整合了Nacos配置中心。接下来,又基于Nacos实现了动态刷新与配置共享。

今天,就正式进入分布式事务篇章的学习,首先,我们简单介绍下分布式事务的核心原理与SpringCloud Alibaba技术栈中的Seata框架。

image.png

分布式事务是互联网行业一直无法绕过的技术难题,如何更加高效的学习分布式事务呢?

系统学习分布式事务

关于分布式事务的产生的场景、解决方案,分布式事务的核心原理可以订阅 【冰河技术】 微信公众号的 【分布式事务】专题进行学习。

深入理解分布式事务

可以阅读冰河出版的《深入理解分布式事务:原理与实战》一书。

image.png

深入理解分布式事务:原理与实战》从实际需求出发,涵盖基础知识,解决方案,原理分析,源码实现和工程实践等五个维度,全面且细致地介绍了有关分布式事务的基础知识、解决方案、核心原理和源码实战。

如果想系统的学习深入理解分布式事务,建议大家阅读《深入理解分布式事务:原理与实战》一书。

Seata介绍

Seata相关的内容来自Seata官网。

链接:https://seata.io/zh-cn/docs/overview/what-is-seata.html

Seata 是什么?

Seata 是一款开源的分布式事务解决方案,致力于提供高性能和简单易用的分布式事务服务。Seata 将为用户提供了 AT、TCC、SAGA 和 XA 事务模式,为用户打造一站式的分布式解决方案。

image.png


AT 模式

前提

  • 基于支持本地 ACID 事务的关系型数据库。
  • Java 应用,通过 JDBC 访问数据库。

整体机制

两阶段提交协议的演变:

  • 一阶段:业务数据和回滚日志记录在同一个本地事务中提交,释放本地锁和连接资源。
  • 二阶段:
  • 提交异步化,非常快速地完成。
  • 回滚通过一阶段的回滚日志进行反向补偿。

写隔离

  • 一阶段本地事务提交前,需要确保先拿到 「全局锁」
  • 拿不到 「全局锁」 ,不能提交本地事务。
  • 「全局锁」 的尝试被限制在一定范围内,超出范围将放弃,并回滚本地事务,释放本地锁。

以一个示例来说明:

两个全局事务 tx1 和 tx2,分别对 a 表的 m 字段进行更新操作,m 的初始值 1000。

tx1 先开始,开启本地事务,拿到本地锁,更新操作 m = 1000 - 100 = 900。本地事务提交前,先拿到该记录的 「全局锁」 ,本地提交释放本地锁。tx2 后开始,开启本地事务,拿到本地锁,更新操作 m = 900 - 100 = 800。本地事务提交前,尝试拿该记录的 「全局锁」 ,tx1 全局提交前,该记录的全局锁被 tx1 持有,tx2 需要重试等待 「全局锁」

image.png

tx1 二阶段全局提交,释放 「全局锁」 。tx2 拿到 「全局锁」 提交本地事务。

image.png

如果 tx1 的二阶段全局回滚,则 tx1 需要重新获取该数据的本地锁,进行反向补偿的更新操作,实现分支的回滚。

此时,如果 tx2 仍在等待该数据的 「全局锁」,同时持有本地锁,则 tx1 的分支回滚会失败。分支的回滚会一直重试,直到 tx2 的 「全局锁」 等锁超时,放弃 「全局锁」 并回滚本地事务释放本地锁,tx1 的分支回滚最终成功。

因为整个过程 「全局锁」 在 tx1 结束前一直是被 tx1 持有的,所以不会发生 「脏写」 的问题。

读隔离

在数据库本地事务隔离级别 「读已提交(Read Committed)」 或以上的基础上,Seata(AT 模式)的默认全局隔离级别是 「读未提交(Read Uncommitted)」

如果应用在特定场景下,必需要求全局的 「读已提交」 ,目前 Seata 的方式是通过 SELECT FOR UPDATE 语句的代理。

image.png

SELECT FOR UPDATE 语句的执行会申请 「全局锁」 ,如果 「全局锁」 被其他事务持有,则释放本地锁(回滚 SELECT FOR UPDATE 语句的本地执行)并重试。这个过程中,查询是被 block 住的,直到 「全局锁」 拿到,即读取的相关数据是 「已提交」 的,才返回。

出于总体性能上的考虑,Seata 目前的方案并没有对所有 SELECT 语句都进行代理,仅针对 FOR UPDATE 的 SELECT 语句。

工作机制

以一个示例来说明整个 AT 分支的工作过程。

业务表:product

Field Type Key
id bigint(20) PRI
name varchar(100)
since varchar(100)

AT 分支事务的业务逻辑:

update product set name = 'GTS' where name = 'TXC';

「一阶段」

过程:

  1. 解析 SQL:得到 SQL 的类型(UPDATE),表(product),条件(where name = 'TXC')等相关的信息。
  2. 查询前镜像:根据解析得到的条件信息,生成查询语句,定位数据。
select id, name, since from product where name = 'TXC';

得到前镜像:

id name since
1 TXC 2014
  1. 执行业务 SQL:更新这条记录的 name 为 'GTS'。
  2. 查询后镜像:根据前镜像的结果,通过 「主键」 定位数据。
select id, name, since from product where id = 1;

得到后镜像:

id name since
1 GTS 2014
  1. 插入回滚日志:把前后镜像数据以及业务 SQL 相关的信息组成一条回滚日志记录,插入到 UNDO_LOG 表中。
{
 "branchId": 641789253,
 "undoItems": [{
  "afterImage": {
   "rows": [{
    "fields": [{
     "name": "id",
     "type": 4,
     "value": 1
    }, {
     "name": "name",
     "type": 12,
     "value": "GTS"
    }, {
     "name": "since",
     "type": 12,
     "value": "2014"
    }]
   }],
   "tableName": "product"
  },
  "beforeImage": {
   "rows": [{
    "fields": [{
     "name": "id",
     "type": 4,
     "value": 1
    }, {
     "name": "name",
     "type": 12,
     "value": "TXC"
    }, {
     "name": "since",
     "type": 12,
     "value": "2014"
    }]
   }],
   "tableName": "product"
  },
  "sqlType": "UPDATE"
 }],
 "xid": "xid:xxx"
}
  1. 提交前,向 TC 注册分支:申请 product 表中,主键值等于 1 的记录的 「全局锁」
  2. 本地事务提交:业务数据的更新和前面步骤中生成的 UNDO LOG 一并提交。
  3. 将本地事务提交的结果上报给 TC。

「二阶段-回滚」

  1. 收到 TC 的分支回滚请求,开启一个本地事务,执行如下操作。
  2. 通过 XID 和 Branch ID 查找到相应的 UNDO LOG 记录。
  3. 数据校验:拿 UNDO LOG 中的后镜与当前数据进行比较,如果有不同,说明数据被当前全局事务之外的动作做了修改。这种情况,需要根据配置策略来做处理,详细的说明在另外的文档中介绍。
  4. 根据 UNDO LOG 中的前镜像和业务 SQL 的相关信息生成并执行回滚的语句:
update product set name = 'TXC' where id = 1;
  1. 提交本地事务。并把本地事务的执行结果(即分支事务回滚的结果)上报给 TC。

「二阶段-提交」

  1. 收到 TC 的分支提交请求,把请求放入一个异步任务的队列中,马上返回提交成功的结果给 TC。
  2. 异步任务阶段的分支提交请求将异步和批量地删除相应 UNDO LOG 记录。

附录

「回滚日志表」

UNDO_LOG Table:不同数据库在类型上会略有差别。

以 MySQL 为例:

Field Type
branch_id bigint     PK
xid varchar(100)
context varchar(128)
rollback_info longblob
log_status tinyint
log_created datetime
log_modified datetime
-- 注意此处0.7.0+ 增加字段 context
CREATE TABLE `undo_log` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `branch_id` bigint(20) NOT NULL,
  `xid` varchar(100) NOT NULL,
  `context` varchar(128) NOT NULL,
  `rollback_info` longblob NOT NULL,
  `log_status` int(11) NOT NULL,
  `log_created` datetime NOT NULL,
  `log_modified` datetime NOT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `ux_undo_log` (`xid`,`branch_id`)
) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

TCC 模式

回顾总览中的描述:一个分布式的全局事务,整体是 「两阶段提交」 的模型。全局事务是由若干分支事务组成的,分支事务要满足 「两阶段提交」 的模型要求,即需要每个分支事务都具备自己的:

  • 一阶段 prepare 行为
  • 二阶段 commit 或 rollback 行为

image.png

根据两阶段行为模式的不同,我们将分支事务划分为 「Automatic (Branch) Transaction Mode」「Manual (Branch) Transaction Mode」.

AT 模式(参考链接 TBD)基于 「支持本地 ACID 事务」「关系型数据库」

  • 一阶段 prepare 行为:在本地事务中,一并提交业务数据更新和相应回滚日志记录。
  • 二阶段 commit 行为:马上成功结束,「自动」 异步批量清理回滚日志。
  • 二阶段 rollback 行为:通过回滚日志,「自动」 生成补偿操作,完成数据回滚。

相应的,TCC 模式,不依赖于底层数据资源的事务支持:

  • 一阶段 prepare 行为:调用 「自定义」 的 prepare 逻辑。
  • 二阶段 commit 行为:调用 「自定义」 的 commit 逻辑。
  • 二阶段 rollback 行为:调用 「自定义」 的 rollback 逻辑。

所谓 TCC 模式,是指支持把 「自定义」 的分支事务纳入到全局事务的管理中。

Saga 模式

Saga模式是SEATA提供的长事务解决方案,在Saga模式中,业务流程中每个参与者都提交本地事务,当出现某一个参与者失败则补偿前面已经成功的参与者,一阶段正向服务和二阶段补偿服务都由业务开发实现。

image.png

理论基础:Hector & Kenneth 发表论⽂ Sagas (1987)

适用场景

  • 业务流程长、业务流程多
  • 参与者包含其它公司或遗留系统服务,无法提供 TCC 模式要求的三个接口

优势

  • 一阶段提交本地事务,无锁,高性能
  • 事件驱动架构,参与者可异步执行,高吞吐
  • 补偿服务易于实现

缺点

  • 不保证隔离性
相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
相关文章
|
2月前
|
数据管理 API 调度
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
HarmonyOS Next 是华为新一代操作系统,专注于分布式技术的深度应用与生态融合。本文通过技术特点、应用场景及实战案例,全面解析其核心技术架构与开发流程。重点介绍分布式软总线2.0、数据管理、任务调度等升级特性,并提供基于 ArkTS 的原生开发支持。通过开发跨设备协同音乐播放应用,展示分布式能力的实际应用,涵盖项目配置、主界面设计、分布式服务实现及部署调试步骤。此外,深入分析分布式数据同步原理、任务调度优化及常见问题解决方案,帮助开发者掌握 HarmonyOS Next 的核心技术和实战技巧。
257 76
鸿蒙HarmonyOS应用开发 | 探索 HarmonyOS Next-从开发到实战掌握 HarmonyOS Next 的分布式能力
|
3天前
|
人工智能 Kubernetes 异构计算
大道至简-基于ACK的Deepseek满血版分布式推理部署实战
本教程演示如何在ACK中多机分布式部署DeepSeek R1满血版。
|
26天前
|
存储 缓存 Java
Java中的分布式缓存与Memcached集成实战
通过在Java项目中集成Memcached,可以显著提升系统的性能和响应速度。合理的缓存策略、分布式架构设计和异常处理机制是实现高效缓存的关键。希望本文提供的实战示例和优化建议能够帮助开发者更好地应用Memcached,实现高性能的分布式缓存解决方案。
39 9
|
2月前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
242 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
1月前
|
Java 关系型数据库 数据库
微服务SpringCloud分布式事务之Seata
SpringCloud+SpringCloudAlibaba的Seata实现分布式事务,步骤超详细,附带视频教程
73 1
|
2月前
|
NoSQL Java Redis
秒杀抢购场景下实战JVM级别锁与分布式锁
在电商系统中,秒杀抢购活动是一种常见的营销手段。它通过设定极低的价格和有限的商品数量,吸引大量用户在特定时间点抢购,从而迅速增加销量、提升品牌曝光度和用户活跃度。然而,这种活动也对系统的性能和稳定性提出了极高的要求。特别是在秒杀开始的瞬间,系统需要处理海量的并发请求,同时确保数据的准确性和一致性。 为了解决这些问题,系统开发者们引入了锁机制。锁机制是一种用于控制对共享资源的并发访问的技术,它能够确保在同一时间只有一个进程或线程能够操作某个资源,从而避免数据不一致或冲突。在秒杀抢购场景下,锁机制显得尤为重要,它能够保证商品库存的扣减操作是原子性的,避免出现超卖或数据不一致的情况。
83 10
|
2月前
|
消息中间件 SQL 中间件
大厂都在用的分布式事务方案,Seata+RocketMQ带你打破10万QPS瓶颈
分布式事务涉及跨多个数据库或服务的操作,确保数据一致性。本地事务通过数据库直接支持ACID特性,而分布式事务则需解决跨服务协调难、高并发压力及性能与一致性权衡等问题。常见的解决方案包括两阶段提交(2PC)、Seata提供的AT和TCC模式、以及基于消息队列的最终一致性方案。这些方法各有优劣,适用于不同业务场景,选择合适的方案需综合考虑业务需求、系统规模和技术团队能力。
371 7
|
2月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
119 4
|
4月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
9天前
|
缓存 NoSQL 中间件
Redis,分布式缓存演化之路
本文介绍了基于Redis的分布式缓存演化,探讨了分布式锁和缓存一致性问题及其解决方案。首先分析了本地缓存和分布式缓存的区别与优劣,接着深入讲解了分布式远程缓存带来的并发、缓存失效(穿透、雪崩、击穿)等问题及应对策略。文章还详细描述了如何使用Redis实现分布式锁,确保高并发场景下的数据一致性和系统稳定性。最后,通过双写模式和失效模式讨论了缓存一致性问题,并提出了多种解决方案,如引入Canal中间件等。希望这些内容能为读者在设计分布式缓存系统时提供有价值的参考。感谢您的阅读!
Redis,分布式缓存演化之路