分布式系统架构8:分布式缓存

简介: 本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。

这是小卷对分布式系统架构学习的第11篇文章,今天了解分布式缓存的理论知识以及Redis集群。

分布式缓存也是面试常见的问题,通常面试官会问为什么要用缓存,以及用的Redis是哪种模式,用的过程中遇到哪些问题这些

1. AP还是CP

Redis 集群就是典型的 AP 式,它具有高性能、高可用等特点,但它却并不保证强一致性。

而能够保证强一致性的 ZooKeeper、Doozerd、Etcd 等框架,吞吐量比不过Redis,通常不会用作“缓存框架”,而是作为通知、协调、队列、分布式锁等使用

2.透明多级缓存TMC

实际开发中,同时搭配进程内缓存和分布式缓存,来构成透明多级缓存(Transparent Multilevel Cache,TMC)

多级缓存的查询过程如下图:

分布式缓存1.png

缺点:代码侵入性大,由开发人员维护管理

一、二级缓存数据不一致问题解决:

  • 设计原则:变更以分布式缓存中的数据为准,查询以进程内缓存数据优先

3.实现方案

3.1 memcached缓存

在服务端,memcached集群环境实际就是一个个memcached服务器的堆积

cache的分布式主要是在客户端实现,通过客户端的路由处理来达到分布式解决方案的目的。客户端做路由的原理,是在每次存取某key的value时,通过一致性哈希算法把key映射到某台memcached服务器node上。

如下是memcached客户端路由过程:

分布式缓存2.png

3.2 Redis缓存

与memcached客户端支持分布式方案不同,Redis更倾向于在服务端构建分布式存储

分布式缓存3.png

分布式缓存4.png

  • 以Redis集群模式为例,它没有中心节点,具有线性可伸缩的功能。

  • 节点与节点之间通过二进制协议进行通信,节点与客户端之间通过ascii协议进行通信

  • 在数据的放置策略上,Redis Cluster将整个key的数值域分成2的14次方16384个hash槽,每个节点上可以存储一个或多个hash槽,也就是说当前Redis Cluster支持的最大节点数就是16384
  • 总结下:数据hash分布在不同redis节点实例,主/从切换采用Sentinel
  • 写:只会写master Instance,从sentinel获取当前的master instance;
  • 读:从redis node中基于权重选取一个实例读取,失败/超时则轮询其他实例;

要想详细了解redis的面试过程中的问题,可以参考下面的思维导图自行整理:

分布式缓存5.png

4. 缓存风险

4.1 缓存穿透

缓存风险问题也是面试常考的八股文题目,这里还是简单说明下

缓存穿透:查询的数据在数据库里根本不存在,缓存里也不会有,这样的请求每次都不会命中缓存,会请求到末端数据库。这种查询不存在数据的现象就是缓存穿透

解决办法:

  • 对业务逻辑本身不能避免的缓存穿透:对返回为空的Key值进行缓存,如果数据库中对该key插入新记录,就需要主动清理缓存的key值。
  • 恶意攻击导致的缓存穿透:缓存之前设置一个布隆过滤器来解决,思路就是判断请求的数据是否存在,布隆过滤器可以判断某个元素是否在集合中

4.2 缓存击穿

概念:单个热点key失效,在失效的那一刻,同时有大量请求打到DB上,造成数据库压力剧增的情况

解决办法:

  • 设置热点key不过期定时任务更新缓存或者设置互斥锁,当请求过来时,发现缓存不存在数据时,就给当前请求加锁,后面的请求等待或者返回,当从数据库中拿出来放到缓存中时,就可以释放锁资源。

4.3 缓存雪崩

概念:多个热点key缓存失效,大量的key设置了相同的过期时间、导致缓存在同一时间全部失效,造成瞬时DB请求量大、压力剧增。

解决办法:

  • 存数据的过期时间设置随机,防止同一时间大量数据过期现象发生
  • 启用透明多级缓存,多个服务节点因为加载一级缓存的时间不一样,也能分散过期时间

4.4 缓存污染

概念:缓存中的数据与真实数据源中的数据不一致的现象

解决办法:

使用更新缓存时遵循的设计模式,如:Cache Aside,Read/Write Through,Write Behind Caching这些

Cache Aside模式的工作方式:

  • 读数据时,先读缓存,如缓存中没有,则读数据库,再将数据写入缓存中;
  • 写数据时,先写数据库,然后失效缓存(删除缓存数据);

面试可能遇到的两个关于Cache Aside的问题:

1.更新先后顺序,为什么先更新数据库再删除缓存?

  • 假设先删除缓存再更新数据库,会有一段时间是缓存已删除,数据库未更新的情况。这时如果有请求进来,缓存中没查到,就会查数据库中旧的数据,再放到缓存里。造成问题就是:数据库已经是最新数据,缓存中还是旧的,不一致的问题;

2.为什么是删除缓存,而不是更新缓存?

  • 和上面一样,更新过程中,如果有其他更新请求进来更新数据库,缓存就会面临多次修改赋值的复杂时序问题。所以直接删除缓存就行。

总结:本文只写了一些关于分布式缓存的简单理论内容,实际面试时大多围绕redis进行提问,下次再写关于redis的相关内容

相关文章
文生图架构设计原来如此简单之分布式服务
想象一下,当成千上万的用户同时要求AI画图,如何公平高效地处理这些请求?文生图/图生图大模型的架构设计看似复杂,实则遵循简单而有效的原则:合理排队、分工明确、防患未然。
57 14
文生图架构设计原来如此简单之分布式服务
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
30 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
分布式系统学习10:分布式事务
本文是小卷关于分布式系统架构学习系列的第13篇,重点探讨了分布式事务的相关知识。随着业务增长,单体架构拆分为微服务后,传统的本地事务无法满足需求,因此需要引入分布式事务来保证数据一致性。文中详细介绍了分布式事务的必要性、实现方案及其优缺点,包括刚性事务(如2PC、3PC)和柔性事务(如TCC、Saga、本地消息表、MQ事务、最大努力通知)。同时,还介绍了Seata框架作为开源的分布式事务解决方案,提供了多种事务模式,简化了分布式事务的实现。
100 5
分布式系统学习9:分布式锁
本文介绍了分布式系统中分布式锁的概念、实现方式及其应用场景。分布式锁用于在多个独立的JVM进程间确保资源的互斥访问,具备互斥、高可用、可重入和超时机制等特点。文章详细讲解了三种常见的分布式锁实现方式:基于Redis、Zookeeper和关系型数据库(如MySQL)。其中,Redis适合高性能场景,推荐使用Redisson库;Zookeeper适用于对一致性要求较高的场景,建议基于Curator框架实现;而基于数据库的方式性能较低,实际开发中较少使用。此外,还探讨了乐观锁和悲观锁的区别及适用场景,并介绍了如何通过Lua脚本和Redis的`SET`命令实现原子操作,以及Redisson的自动续期机
225 7
分布式系统架构7:本地缓存
这是小卷关于分布式系统架构学习的第10篇文章,主要介绍本地缓存的基础理论。文章分析了引入缓存的利弊,解释了缓存对CPU和I/O压力的缓解作用,并讨论了缓存的吞吐量、命中率、淘汰策略等属性。同时,对比了几种常见的本地缓存工具(如ConcurrentHashMap、Ehcache、Guava Cache和Caffeine),详细介绍了它们的访问控制、淘汰策略及扩展功能。
98 6
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
60 29
Redis应用—8.相关的缓存框架
本文介绍了Ehcache和Guava Cache两个缓存框架及其使用方法,以及如何自定义缓存。主要内容包括:Ehcache缓存框架、Guava Cache缓存框架、自定义缓存。总结:Ehcache适合用作本地缓存或与Redis结合使用,Guava Cache则提供了更灵活的缓存管理和更高的并发性能。自定义缓存可以根据具体需求选择不同的数据结构和引用类型来实现特定的缓存策略。
Redis应用—8.相关的缓存框架
Redis缓存设计与性能优化
Redis缓存设计与性能优化涵盖缓存穿透、击穿、雪崩及热点key重建等问题。针对缓存穿透,可采用缓存空对象或布隆过滤器;缓存击穿通过随机设置过期时间避免集中失效;缓存雪崩需确保高可用性并使用限流熔断组件;热点key重建利用互斥锁防止大量线程同时操作。此外,开发规范强调键值设计、命令使用和客户端配置优化,如避免bigkey、合理使用批量操作和连接池管理。系统内核参数如vm.swappiness、vm.overcommit_memory及文件句柄数的优化也至关重要。慢查询日志帮助监控性能瓶颈。
44 9
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)