【Spark】(三)Spark 架构原理和RDD使用详解1

简介: 【Spark】(三)Spark 架构原理和RDD使用详解1

文章目录


一、Spark 架构原理

1.1 Spark架构核心组件

1.2 各部分功能图

二、RDD概述

2.1 什么是RDD?

2.2 RDD具体包含了一些什么东西?

2.3 RDD的五大特性

2.4 RDD可以从哪来

2.5 WordCount粗图解RDD

三、RDD的创建方式

3.1 通过读取文件生成的

3.2 通过并行化的方式创建RDD

3.3 其他方式

四、RDD编程API

4.1 Transformation

4.2 Action

4.3 Spark WordCount代码编写

(1)使用scala进行编写

4.4 WordCount执行过程图

五、RDD的宽依赖和窄依赖

5.1 RDD依赖关系的本质内幕

5.2 依赖关系下的数据流视图


一、Spark 架构原理


image.png

SparkContext 主导应用执行

Cluster Manager 节点管理器

Cache : Worker Node 之间共享信息、通信

Executor 虚拟机 容器启动 接任务 Task(core数 一次处理一个RDD分区)


1.1 Spark架构核心组件


image.png


1.2 各部分功能图


image.png


Driver 注册了一些 Executor后,就可以开始正式执行 spark 应用程序了。第一步是创建 RDD,读取数据源;

HDFS 文件被读取到多个 Worker节点,形成内存中的分布式数据集,也就是初始RDD;

Driver会根据程序对RDD的定义的操作,提交 Task 到 Executor;

Task会对RDD的partition数据执行指定的算子操作,形成新的RDD的partition;


二、RDD概述


2.1 什么是RDD?


RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合。RDD具有数据流模型的特点:自动容错、位置感知性调度和可伸缩性。RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度。


2.2 RDD具体包含了一些什么东西?


RDD是一个类,它包含了数据应该在哪算,具体该怎么算,算完了放在哪个地方。它是能被序列化,也能被反序列化。在开发的时候,RDD给人的感觉就是一个只读的数据。但是不是,RDD存储的不是数据,而是数据的位置,数据的类型,获取数据的方法,分区的方法等等。


2.3 RDD的五大特性


(1)一组分片(Partition),即数据集的基本组成单位。对于RDD来说,每个分片都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分片个数,如果没有指定,那么就会采用默认值。默认值就是程序所分配到的CPU Core的数目。


(2)一个计算每个分区的函数。Spark中RDD的计算是以分片为单位的,每个RDD都会实现compute函数以达到这个目的。compute函数会对迭代器进行复合,不需要保存每次计算的结果。


(3)RDD之间的依赖关系。RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。


(4)一个Partitioner,即RDD的分片函数。当前Spark中实现了两种类型的分片函数,一个是基于哈希的HashPartitioner,另外一个是基于范围的RangePartitioner。只有对于于key-value的RDD,才会有Partitioner,非key-value的RDD的Parititioner的值是None。Partitioner函数不但决定了RDD本身的分片数量,也决定了parent RDD Shuffle输出时的分片数量。


(5)一个列表,存储存取每个Partition的优先位置(preferred location)。对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置。


2.4 RDD可以从哪来


通过序列化集合的方式

image.png

通过读取文件的方式

scala> sc.textFile("hdfs://wc/e.txt")
res0: org.apache.spark.rdd.RDD[String] = hdfs://wc/e.txt MapPartitionsRDD[1] at textFile at <console>:25
scala> val rdd = sc.textFile("hdfs://192.168.56.137:9000/wc/e.txt")
rdd: org.apache.spark.rdd.RDD[String] = hdfs://192.168.56.137:9000/wc/e.txt MapPartitionsRDD[21] at textFile at <console>:24


通过其他的RDD进行transformation转换而来


2.5 WordCount粗图解RDD


image.png


其中hello.txt


image.png


三、RDD的创建方式



3.1 通过读取文件生成的


由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

scala> val file = sc.textFile("/spark/hello.txt")

image.png


3.2 通过并行化的方式创建RDD


由一个已经存在的Scala集合创建。

scala> val array = Array(1,2,3,4,5)
array: Array[Int] = Array(1, 2, 3, 4, 5)
scala> val rdd = sc.parallelize(array)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at <console>:26
scala>

image.png


3.3 其他方式


读取数据库等等其他的操作。也可以生成RDD。


RDD可以通过其他的RDD转换而来的。


目录
相关文章
|
15天前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
|
11天前
|
SQL Java 数据库连接
Mybatis架构原理和机制,图文详解版,超详细!
MyBatis 是 Java 生态中非常著名的一款 ORM 框架,在一线互联网大厂中应用广泛,Mybatis已经成为了一个必会框架。本文详细解析了MyBatis的架构原理与机制,帮助读者全面提升对MyBatis的理解和应用能力。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
Mybatis架构原理和机制,图文详解版,超详细!
|
25天前
|
开发者 容器
Flutter&鸿蒙next 布局架构原理详解
本文详细介绍了 Flutter 中的主要布局方式,包括 Row、Column、Stack、Container、ListView 和 GridView 等布局组件的架构原理及使用场景。通过了解这些布局 Widget 的基本概念、关键属性和布局原理,开发者可以更高效地构建复杂的用户界面。此外,文章还提供了布局优化技巧,帮助提升应用性能。
82 4
|
25天前
|
存储 Dart 前端开发
flutter鸿蒙版本mvvm架构思想原理
在Flutter中实现MVVM架构,旨在将UI与业务逻辑分离,提升代码可维护性和可读性。本文介绍了MVVM的整体架构,包括Model、View和ViewModel的职责,以及各文件的详细实现。通过`main.dart`、`CounterViewModel.dart`、`MyHomePage.dart`和`Model.dart`的具体代码,展示了如何使用Provider进行状态管理,实现数据绑定和响应式设计。MVVM架构的分离关注点、数据绑定和可维护性特点,使得开发更加高效和整洁。
151 3
|
25天前
|
分布式计算 大数据 Apache
Apache Spark & Paimon Meetup · 北京站,助力 LakeHouse 架构生产落地
2024年11月15日13:30北京市朝阳区阿里中心-望京A座-05F,阿里云 EMR 技术团队联合 Apache Paimon 社区举办 Apache Spark & Paimon meetup,助力企业 LakeHouse 架构生产落地”线下 meetup,欢迎报名参加!
88 3
|
1月前
|
容器
Flutter&鸿蒙next 布局架构原理详解
Flutter&鸿蒙next 布局架构原理详解
|
1月前
|
存储 分布式计算 druid
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
大数据-155 Apache Druid 架构与原理详解 数据存储 索引服务 压缩机制
56 3
|
1月前
|
消息中间件 分布式计算 druid
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进
44 2
|
1月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
69 1
|
1月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
50 0
下一篇
无影云桌面