大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
注册配置 MSE Nacos/ZooKeeper,182元/月
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
简介: 大数据-154 Apache Druid 架构与原理详解 基础架构、架构演进

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(已更完)

Kudu(已更完)

Druid(正在更新…)

章节内容

上节我们完成了如下的内容:


Apache Druid 从 Kafka 中加载数据

实际测试 可视化操作

基础架构

Coordinator Node

主要负责历史节点的数据负载均衡,以及通过规则管理数据的生命周期,协调节点告诉历史节点加载新数据、卸载过期数据、复制数据、负责均衡移动数据

Coordinator是周期运行的(由 druid.coordinator.period 配置指定,默认间隔60秒),Coordinator需要维护和ZooKeeper的连接,以获取集群的信息。Segment和Rule的信息保存在元数据中,所以也需要维护与元数据库的连接。


Overlord Node

进程监视MiddleManager进程,并且是Druid数据摄入的主节点,负责将提取任务分配给MiddleManagers并协调Segment发布,包括接受、拆解、分配Task,以及创建Task相关的锁,并返回Task的状态。


Historical Node

加载生成好的数据文件,以供数据查询。Historical Node是整个集群查询性能的核心所在,Historical会承担绝大部分的Segment查询。


Historical 进程从 Deep Storage 中下载 Segment,并响应有关这些Segment的查询请求(这些请求来自Broker进程)

Historical 进程不处理写入请求

Historical 进程采用了无共享架构设计,它知道如何去加载和删除 Segment,以及如何基于 Segment 来响应查询。即便底层的深度存储无法正常工作,Historical 进程还是能针对其已同步的 Segments,正常提供查询服务。

底层的深度存储无法正常工作,Historical进程还是能针对其已同步的 Segments,正常提供查询服务。

MiddleManager Node

及时摄入实时数据,生成Segment数据文件


MiddleManager 进程是执行提交任务的工作节点,MiddleManagers将任务转发给在不同JVM中运行的Peon进程

MiddleManager、Peon、Task的对应关系是:每个Peon进程一次只能运行一个Task任务,但一个MiddleManager却可以管理多个Peon进程

Broker Node

接收客户端查询请求,并将这些查询转发给 Histo 和 MiddleManagers。当Brokers从这些子查询中收到结果时,它们会合并这些结果并将它们返回给调用者。


Broker 节点负责转发Client查询请求的

Broker 通过 ZooKeeper 能够知道哪个 Segment 在哪些节点上,将查询转发给相应节点

所有节点返回数据后,Broker会所有节点的数据进行合并,然后返回给Client

Router Node

(可选)

负责将路由转发到Broker、Coordinator、Overlords


Router进程可以在 Broker、Overlords、Coordinator进程之上,提供一层统一的API网关

Router进程是可选的,如果集群数据规模已经到达了TB级别,需要考虑启动(druid.router.managerProxy.enable=true)

一旦集群规模达到一定数量级,那么发生故障的概率就会变得不容忽视,而Router支持将请求只发送给健康的节点,避免请求失败。

同时,查询的响应时间和资源消耗,也会随着数据量的增长而变高,而Router支持设置查询的优先级和负载均衡策略,避免了大查询造成的队列堆积或查询热点等问题

如何分类

Druid的进程可以被任意部署,为了理解与部署组织方便,这些进程分为了三类:


Master:Coordinator、Overlord 负责数据可用性和摄取

Query:Broker、Router 负责处理外部请求

Data:Historical、MiddleManager,负责实际的Ingestion负载和数据存储

其他依赖

Deep Storage

存放生成的 Segment 数据文件,并供历史服务器下载,对于单节点集群可以是本地磁盘,而对于分布式集群一般是HDFS。


Druid使用 Deep Storage来做数据的备份,也作为Druid进程之间在后台传输数据的一种方式

当相应查询时,Historical首先从本地磁盘读取预取的段,这也意味着需要在Deep Storage和加载的数据Historical中拥有足够的磁盘空间。

Metadata Storage

存储Durid集群的元数据信息,如Segment的相关信息,一般使用MySQL。

ZooKeeper

为Durid集群提供以执行协调任务,如内部服务的监控,协调和领导者选举


Coordinator 节点的 Leader 选举

Historical 节点发布 Segment 的协议

Coordinator 和 Historical 之间 load、drop Segment的协议

Orverlord节点的Leader选举

Overlord和MiddleManger之间Task管理

架构演进

初始版本~0.6.0

2012-2013年

0.7.0~0.12.0

2013年-2018年

集群管理

0.13.0~当前版本

Lambda架构

从大的架构上看,Druid是一个Lambda架构。

Lambda架构是由Storm坐着Nathan Marz提出的一个实时大数据处理框架,Lambda架构设计是为了处理大规模数据时,同时发挥流处理和批处理的优势:


通过批处理提供全面、准确的数据

通过流处理提供低延迟的数据

从而达到平衡延迟、吞吐量和容错性的目的,为了满足下游的及时查询,批处理和流处理的结果会合并。

Lambda架构包含三层:BatchLayer、SpeedLayer、Serving Layer


BatchLayer:批处理层,对离线的历史数据进行预计算,为了下游能够快速查询想要的结果,由于批处理基于完成的历史数据集,准确性可以得到保证,批处理层可以用Hadoop、Spark、Flink等框架计算。

SpeedLayer:加速处理层,处理实时的增量数据,这一层重点在于低延迟,加速层的数据不如批处理层那样完整和准确,但是可以填补批处理高延迟导致的数据空白。加速层可以使用Storm、Spark Streaming和Flink等框架计算。

ServingLayer:合并层,将历史数据、实时数据合并在一起,输出到数据库或者其他介质,供下游分析

流式数据链路

Raw Data - Kafka - Streaming Processor(Optional 实时ETL)- Kafka(Optional)- Druid - Application/User


批处理数据链路

Raw data - Kafka(Optional) - HDFS - ETL Process(Optional)- Druid - Application/User


相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
3月前
|
存储 SQL 分布式计算
MaxCompute 聚簇优化推荐原理
基于历史查询智能推荐Clustered表,显著降低计算成本,提升数仓性能。
258 4
MaxCompute 聚簇优化推荐原理
|
4月前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
895 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
2月前
|
机器学习/深度学习 自然语言处理 监控
23_Transformer架构详解:从原理到PyTorch实现
Transformer架构自2017年Google发表的论文《Attention Is All You Need》中提出以来,彻底改变了深度学习特别是自然语言处理领域的格局。在短短几年内,Transformer已成为几乎所有现代大型语言模型(LLM)的基础架构,包括BERT、GPT系列、T5等革命性模型。与传统的RNN和LSTM相比,Transformer通过自注意力机制实现了并行化训练,极大提高了模型的训练效率和性能。
|
5月前
|
存储 监控 算法
园区导航系统技术架构实现与原理解构
本文聚焦园区导航场景中室内外定位精度不足、车辆调度路径规划低效、数据孤岛难以支撑决策等技术痛点,从架构设计到技术原理,对该系统从定位到数据中台进行技术拆解。
209 0
园区导航系统技术架构实现与原理解构
|
7月前
|
存储 人工智能 自然语言处理
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
本文深入探讨了混合专家(MoE)架构在大型语言模型中的应用与技术原理。MoE通过稀疏激活机制,在保持模型高效性的同时实现参数规模的大幅扩展,已成为LLM发展的关键趋势。文章分析了MoE的核心组件,包括专家网络与路由机制,并对比了密集与稀疏MoE的特点。同时,详细介绍了Mixtral、Grok、DBRX和DeepSeek等代表性模型的技术特点及创新。MoE不仅解决了传统模型扩展成本高昂的问题,还展现出专业化与适应性强的优势,未来有望推动AI工具更广泛的应用。
3703 4
为什么混合专家模型(MoE)如此高效:从架构原理到技术实现全解析
|
6月前
|
存储 消息中间件 canal
zk基础—2.架构原理和使用场景
ZooKeeper(ZK)是一个分布式协调服务,广泛应用于分布式系统中。它提供了分布式锁、元数据管理、Master选举及分布式协调等功能,适用于如Kafka、HDFS、Canal等开源分布式系统。ZK集群采用主从架构,具有顺序一致性、高性能、高可用和高并发等特点。其核心机制包括ZAB协议(保证数据一致性)、Watcher监听回调机制(实现通知功能)、以及基于临时顺序节点的分布式锁实现。ZK适合小规模集群部署,主要用于读多写少的场景。
|
2月前
|
Cloud Native Serverless API
微服务架构实战指南:从单体应用到云原生的蜕变之路
🌟蒋星熠Jaxonic,代码为舟的星际旅人。深耕微服务架构,擅以DDD拆分服务、构建高可用通信与治理体系。分享从单体到云原生的实战经验,探索技术演进的无限可能。
微服务架构实战指南:从单体应用到云原生的蜕变之路
|
5月前
|
缓存 Cloud Native Java
Java 面试微服务架构与云原生技术实操内容及核心考点梳理 Java 面试
本内容涵盖Java面试核心技术实操,包括微服务架构(Spring Cloud Alibaba)、响应式编程(WebFlux)、容器化(Docker+K8s)、函数式编程、多级缓存、分库分表、链路追踪(Skywalking)等大厂高频考点,助你系统提升面试能力。
254 0

热门文章

最新文章