不用写一行Python代码,就可以用Matplotlib绘图,妈妈再也不担心我不会作图了!

简介: 不用写一行Python代码,就可以用Matplotlib绘图,妈妈再也不担心我不会作图了!

sviewgui介绍

sviewgui是一个基于 PyQt 的 GUI,用于 csv 文件或 Pandas 的 DataFrame 的数据可视化。此 GUI 基于 matplotlib,您可以通过多种方式可视化您的 csv 文件。主要特点:


Ⅰ 散点图、线图、密度图、直方图和箱线图类型;

Ⅱ 标记大小、线宽、直方图的 bin 数量、颜色图的设置(来自 cmocean);

Ⅲ 将图另存为可编辑的 PDF;

Ⅳ 绘制图形的代码可用,以便它可以在 sviewgui 之外重用和修改;

这个包用法超级简单,它只有一种方法:buildGUI()。此方法可以传入零个或一个参数。您可以使用 csv 文件的文件路径作为参数,或者使用 pandas 的DataFrame对象作为参数。类似代码写法如下:


# 第一种形式
import sviewgui.sview as sv
sv.buildGUI()
# 第二种形式
import sviewgui.sview as sv
FILE_PATH = "User/Documents/yourdata.csv"
sv.buildGUI(FILE_PATH)
# 第三种形式
import sviewgui.sview as sv
import pandas as pd
FILE_PATH = "User/Documents/yourdata.csv"
df = pd.read_csv(FILE_PATH)
sv.buildGUI(df)



上面代码,只是用于帮助我们打开这个GuI可视化界面。


最后强调一点,由于这个库是基于matplotlib可视化的,因此seaborn风格同样适用于这里,因为seaborn也是基于matplotlib可视化的。


sviewgui安装

这个库的依赖库相当多,因此大家直接采用下面这行代码安装sviewgui库。


pip install sviewgui -i https://pypi.tuna.tsinghua.edu.cn/simple/ --ignore-installed


后面这个--ignore-installed,我最开始是没加的,但是报错了,大致错误如下:


ERROR: Cannot uninstall 'certifi'. It is a distutils installed project and thus we cannot 
accurately determine which files belong to it which would lead to only a partial uninstall.


大家直到加这个就行,不用管为什么,因为我也不知道!


sviewgui使用

上面我为大家介绍了3种打开GUI图形界面窗口的代码,这里仅介绍下面这种方法:


import sviewgui.sview as sv
sv.buildGUI()

截图如下:

image.png

当你在命令行输入上述代码后,会驱动后台打开这个图形化界面窗口,初始化状态大致是这样的:

image.png

点击上述select,可以选择数据源:

image.png

然后我们可以点击左侧菜单栏,生成对应的图形。但是有一点,貌似不支持中文!!!

image.png

如果你觉得这里的参数,不足以完善你想要的图形,你可以复制图形所对应的Python代码,简单修改即可。

image.png

然后,你拿着下面的代码,简单修改,就可以生成漂亮的Matplotlib图形了。


import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import cmocean
#2021/07/13 08:03:18 
#- Import CSV as DataFrame ---------- 
FILE_PATH = 'C:/Users/Administrator/Desktop/plot.csv'
DATA = pd.read_csv(FILE_PATH)
#- Axes Setting ---------- 
fig, ax = plt.subplots()
ax.set_title( "x-y")
ax.set_xlabel( "x")
ax.set_ylabel( "x" )
ax.set_xlim(min(DATA['x'].replace([np.inf, -np.inf], np.nan ).dropna() ) - abs( min(DATA['x'].replace([np.inf, -np.inf], np.nan ).dropna() )/10), max(DATA['x'].replace([np.inf, -np.inf], np.nan).dropna()) + abs(max(DATA['x'].replace([np.inf, -np.inf], np.nan).dropna())/10)  )
ax.set_ylim( min(DATA['x'].replace([np.inf, -np.inf], np.nan ).dropna() ) - abs( min(DATA['x'].replace([np.inf, -np.inf], np.nan ).dropna() )/10), max(DATA['x'].replace([np.inf, -np.inf], np.nan).dropna()) + abs(max(DATA['x'].replace([np.inf, -np.inf], np.nan).dropna())/10)  )
#- PLOT ------------------ 
ax.plot( DATA["x"].replace([np.inf, -np.inf], np.nan), DATA["x"].replace([np.inf, -np.inf], np.nan), linewidth = 3.0, alpha =1.0, color = "#005AFF" )
plt.show()


相关文章
|
21天前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
28 6
|
11天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
40 8
|
14天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
57 8
|
22天前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
45 11
|
23天前
|
测试技术 Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界中,装饰器是那些能够为我们的代码增添魔力的小精灵。它们不仅让代码看起来更加优雅,还能在不改变原有函数定义的情况下,增加额外的功能。本文将通过生动的例子和易于理解的语言,带你领略装饰器的奥秘,从基础概念到实际应用,一起开启Python装饰器的奇妙旅程。
35 11
|
19天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
20天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
44 6
|
2月前
|
数据可视化 Python
Python 高级绘图:从基础到进阶的可视化实践
本文介绍了使用 Python 的强大绘图库 matplotlib 实现多种图表绘制的方法,包括简单的折线图、多条折线图、柱状图、饼图、散点图及 3D 图的绘制。通过具体代码示例展示了如何设置轴标签、标题、图例等元素,并指出了 matplotlib 支持更多高级绘图功能。来源:https://www.wodianping.com/app/2024-10/47112.html。
99 0
|
数据可视化 数据挖掘 API
《利用Python进行数据分析·第2版》第9章 绘图和可视化
第1章 准备工作第2章 Python语法基础,IPython和Jupyter第3章 Python的数据结构、函数和文件第4章 NumPy基础:数组和矢量计算第5章 pandas入门第6章 数据加载、存储与文件格式第7章 数据清洗和准备第8章 数据规整:聚合、合并和重塑 第9章 绘图和可视化第10章 数据聚合与分组运算第11章 时间序列第12章 pandas高级应用第13章 Python建模库介绍第14章 数据分析案例附录A NumPy高级应用附录B 更多关于IPython的内容(完) 信息可视化(也叫绘图)是数据分析中最重要的工作之一。
1860 0
|
数据可视化 数据挖掘 Python
python数据分析(十四)-matplotlib 绘图与可视化
尽管pandas的绘图函数可以处理很多普通的绘图任务,但是要使用高级功能的话需要学习matplotlib API。
1453 0