正文
一、前提条件
搭建kafka集群
搭建elasticsearch集群
搭建微服务环境
二、准备工作
192.168.1.1
192.168.1.2
192.168.1.3
三、ELK介绍
ELK由Elasticsearch、LogStash、Kibana三部分组成,应用于实时数据检索和分析
Elasticsearch
简介
开源分布式搜索引擎,基于Lucene(全文检索引擎)开发的
Java开发,通过RESTful Web接口,让用户通过浏览器与Elasticsearch通信
对大量的数据进行接近实时的存储,搜索和分析
特点
配置简单易上手,采用JSON接口
处理方式灵活
集群支持线性扩展
检索性能高效
功能
实时全文搜索数据
分析数据
存储数据
概念
NRT(近实时)
在进行搜索时,从索引的一个文档到这个文档被搜索出来,有一个轻微的延迟(通常1秒延迟)
shards(分片)
在实际情况下,索引存储的数据可能超过单个节点的硬件限制。如20亿的文档需要2TB,不适合存储在单节点的磁盘上,或单节点搜索请求太慢。因此,为了解决这个问题,elasticsearch提出将索引分成多个分片的功能。当创建索引时,可以定义想要分片的数量,每一个分片就是一个全功能独立的索引,可以存储在集群的任何节点上。分片的两个最主要的原因:水平分割扩展,增加存储量;分布式并行跨分片操作,提供性能和吞吐量
replicas(副本)
网络问题或其他问题都有可能造成数据丢失,为了数据的健壮性,需要有一个故障切换机制,防止发生任何故障导致分片或节点不可用,因此,需要将索引分片复制一份或多份,称为副本或分片副本。副本的两个主要原因:高可用行,以应对分片或节点故障,出于这个原因,分片副本要在不同的节点上面;高性能,增大吞吐量,搜索可以并行在所有副本上执行
index(索引)
索引是拥有几分相似特征的文档集合,类似数据库中的表,如一个客户数据索引、一个订单数据索引。对索引中的文档进行搜索、更新和删除,都要用到这个名字
document(文档)
文档是索引的基础信息单元,类似于数据库中的某条记录,如一条用户信息文档。文档以JSON格式来表示,索引中可以存储任何多的文档
cluster(集群)
由一个或多个节点组织在一起(集群也可以只有一个节点),它们共同持有你的整个数据,并一起提供索引和搜索功能。其中有一个节点为主节点,主节点可以通过选举产生,并提供跨节点的联合索引和搜索功能。每个节点加入集群都是基于集群名称加入的,因此,确保不同的环境中使用不同集群名称
node(节点)
节点是单一的服务器,是集群的一部分,存储数据并参与集群的索引和搜索功能,节点名称需要是唯一的,在集群中用于识别服务器对应的节点
type(类型)
一个索引可以定义一种或多种类型,用于对一组共同字段的文档定义一个类型,elasticsearch 7之后的版本废除该type
Logstash
简介
用来收集、分析、过滤日志的开源工具,几乎支持任何类型的日志(系统日志、业务日志)
支持多种数据源接收日志(Mysql、Kafka),以多种方式输出数据(Elasticsearch、邮件)
Kibana
简介
开源工具,为Elasticsearch的日志分析提供友好的web界面
用于搜索、分析和可视化存在Elasticsearch指标中的日志数据
利用Elasticsearch的RESTful 接口来检索数据,不仅可以创建数据的定制仪表盘,还能以特殊的方式查询和过滤数据
四、Kafka介绍
Kafka是分布式的基于发布/订阅模式的消息队列,主要应用于大数据实时处理领域
Kafka
简介
分布式、支持分区(partition)、多副本(replica)基于Zookeeper协调的分布式消息中间件
使用scala语言编写,实时处理大量数据
特性
时效性
每秒可处理几十万条消息,延迟最低只有几毫秒;每个topic可以分多个分区(partition),Consumer Group对Partition进行消费,提高负载均衡和消费的能力,具备高吞吐,低延迟的特性
拓展性
kafka集群支持热扩展
持久性
消息持久到本地磁盘,支持数据备份防止数据丢失
读写性能
支持数千个客户端同时读写
集群
一个kafka节点就是一个broker,消息由topic来承载,并且可以存储在1个或多个partition中,发布消息的应用是producer,消费消息的应用是consumer,多个consumer可以促成consumer group来共同消息一个topic中的消息
五、日志监控架构图
之前搭建ELK环境中,日志的处理流程为 logstash > elasticsearch,但是随着业务量的增长,需要对日志监控的架构进一步扩展,引入kafka集群。因此,日志的处理流程变为 kafka > logstash > elasticsearch
思考:ELK加入Kafka有什么好处?
logstash client和logstash server之间没有消息缓存,如果server宕机不可用,会有消息丢失的风险。引入kafka消息机制,保证了即使logstash server因故障停止运行,数据也会缓存下来,避免数据丢失
由于在高并发环境下,数据读写特别频繁,导致logstash运行占用CPU和内存较高,kafka作为消息缓存队列解耦了处理过程,缓解系统的压力,同时提高了可扩展性,具有峰值处理能力,能够使关键组件顶住突发的访问压力,而不会因为并发的超负荷的请求而完全崩溃
六、微服务集成
springboot 2.0 集成elk 7.6.2
1.引入依赖
<!-- logback 推送日志文件到kafka --> <dependency> <groupId>ch.qos.logback</groupId> <artifactId>logback-classic</artifactId> <version>1.2.3</version> </dependency> <dependency> <groupId>com.github.danielwegener</groupId> <artifactId>logback-kafka-appender</artifactId> <version>0.2.0-RC2</version> </dependency>
2.修改logback-spring.xml
<?xml version="1.0" encoding="UTF-8"?> <configuration> <include resource="org/springframework/boot/logging/logback/base.xml" /> <logger name="org.springframework.web" level="INFO"/> <logger name="org.springboot.sample" level="TRACE" /> <!-- 开发、测试环境 --> <springProfile name="dev,test"> <logger name="org.springframework.web" level="INFO"/> <logger name="org.springboot.sample" level="INFO" /> <logger name="io.laokou.elasticsearch" level="DEBUG" /> </springProfile> <!-- 生产环境 --> <springProfile name="prod"> <logger name="org.springframework.web" level="ERROR"/> <logger name="org.springboot.sample" level="ERROR" /> <logger name="io.laokou.elasticsearch" level="ERROR" /> </springProfile> <appender name="KAFKA" class="com.github.danielwegener.logback.kafka.KafkaAppender"> <!-- encoder负责两件事,一是把日志信息转换成字节数组,二是把字节数组写入到输出流 --> <encoder> <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{35} - %msg %n</pattern> </encoder> <!-- 配置topic,自动创建topic --> <topic>laokou-elasticsearch</topic> <!-- 相关配置信息 --> <keyingStrategy class="com.github.danielwegener.logback.kafka.keying.NoKeyKeyingStrategy" /> <deliveryStrategy class="com.github.danielwegener.logback.kafka.delivery.AsynchronousDeliveryStrategy" /> <!-- kafka集群地址 --> <producerConfig>bootstrap.servers=192.168.1.1:9092,192.168.1.2:9092,192.168.1.3:9092</producerConfig> <!-- acks=0 消息只要发送出去,不管那条数据有没有落在磁盘上,直接认为发送成功--> <producerConfig>acks=0</producerConfig> <!-- 消息量较少,过了1000ms自动发送出去 --> <producerConfig>linger.ms=1000</producerConfig> <!-- 消息不被阻塞 --> <producerConfig>max.block.ms=0</producerConfig> <appender-ref ref="CONSOLE" /> </appender> <root level="INFO"> <appender-ref ref="KAFKA" /> </root> </configuration>
3.配置logstash.kafka.conf
input{ kafka { #kafka服务地址 bootstrap_servers => "192.168.1.1:9092,192.168.1.2:9092,192.168.1.3:9092" topics => "laokou-elasticsearch" } } output{ elasticsearch{ hosts=>["192.168.1.1:9200","192.168.1.2:9200","192.168.1.3:9200"] index => "laokou-elasticsearch-%{+YYYY.MM.dd}" } stdout{ codec => rubydebug } }
4.启动logstash 和 kibana
logstash -f logstash.kafka.conf
大功告成
参考博文:ELK日志分析系统(基本原理简介+ELK群集部署)
参考博文:消息队列(MQ)与kafaka概述(Filebeat+Kafka+ELK部署)
参考博文:ELK-基础系列(六)-ELK加入消息队列-Kafka部署