手把手带你玩转Nusences数据集2——nuScenes lidarseg and panoptic教程

简介: 手把手带你玩转Nusences数据集2——nuScenes lidarseg and panoptic教程

准备工作✨✨✨

在上一节中,我们已经下载了mini数据集,这里依旧可以用到。但不同的是,这节我们还会下载其他的数据(lidarseg 和 panoptic),我们需要让这些数据集存储在特定位置,即让不同数据集之前有一定的文件关系,以便后面成功读取✅✅✅


再次强调,本次实验我们将用到三个数据集,分别是v1.0_mini,lidarseg 和 panoptic。**【注意:v1.0_mini在上节我们已经下载,lidarseg 和 panoptic我们仍然使用其mini版本】**下面先来介绍如何下载lidarseg 和 panoptic数据集,方法很简单,我们去官网直接点击下载即可,下载示意图如下:

b5a525e07f3ee690ef9d96188e6d784b (1).png

  为了给大家带来方便,这里也可以在浏览器搜索框输入下面网址直接下载两个数据集:

https://www.nuscenes.org/data/nuScenes-lidarseg-mini-v1.0.tar.bz2  #下载lidarseg-mini数据集
https://www.nuscenes.org/data/nuScenes-panoptic-v1.0-mini.tar.gz   #下载panoptic数据集 

上文提到,我们应将3个数据集提取到规定的特殊位置,即将刚刚下载压缩文件解压到/data/sets/nuscenes中,你的文件夹结构应该是这样的:

22b3eb5b224052def8a88e3b4961b0c6.png

看到这个结构,可能大家还有些许疑惑,这里贴出我文件夹的路径相信大家就一目了然了。【注意:这里还是要提醒一下大家,在下图中的v1.0-mini文件夹中,包括各种.josn格式的文件,其中包括lidarseg.json、panoptic.json、category.json三个文件,这三个文件都是从lidarseg和panoptic数据集中复制过来的】

e7eddff0430d89262a228b42551995e3.png

数据读取✨✨✨

  上文已经下载好了数据集,且文件夹路径配置妥当,现在就可以大展身手,让我们一起来玩转Nuscenes叭⚽⚽⚽

导入相关库并加载数据集

  这里的dataroot为数据集存放位置【这里我使用的是相对路径,你也可以使用绝对路径】,运行成功后应出现如下的信息:

%matplotlib inline
from nuscenes import NuScenes
nusc = NuScenes(version='v1.0-mini', dataroot='data\\sets\\nuscenes', verbose=True)

d7320e6a5e1e3a4218cc7bd2ac86dccf (1).png

  可以从结果中看到,我们已经加载了nuscenes-lidarseg和nuscenes-panoptic,这里和上一节加载数据集结果的不同之处就在这里。

lidarseg和panoptic数据集的点统计

  • lidarseg

让我们通过查看lidarseg数据集中有哪些类以及属于每个类的点数来快速了解一下lidarseg数据集。类将根据点的数量按升序排序(因为下面的sort_by='count');你也可以通过设置sort_by='name'或sort_by='index'分别对类名或类索引进行排序。

# nuscenes-lidarseg
nusc.list_lidarseg_categories(sort_by='count')

输出结果:32e5f6a963aab6669d1cb3b05db9b798.png

  使用list_lidarseg_categories,您可以通过查看最左边的列来获得每个类名所属的索引。你也可以使用lidarseg_idx2name_mapping来获取索引所对应的类名。

nusc.lidarseg_idx2name_mapping

输出结果:

c0207a005f7a11143c6d04f8ca796fd6.png

  • panoptic

对于nuScenes-panoptic,它与nuScenes-lidarseg共享相同的成员变量lidarseg_idx2name_mapping和lidarseg_names2idx_mapping。类似地,您可以从nuScenes-panoptic数据集检查每个语义类别的点数。唯一要做的就是添加gt_from='panoptic'参数。默认情况下,gt_from = ' lidarseg '。


# nuscenes-panoptic
nusc.list_lidarseg_categories(sort_by='count', gt_from='panoptic')

输出结果:60fcdaff9fecf7c68e3ed2f6f7f76114.png

您可能已经注意到某些类别的点数在lidarseg和panoptic数据集之间略有不同。原因是实例之间的重叠点在nuScenes-panoptic中被设置为noise(类别0),你可以看到noise类别的点数增加了,而总点数保持不变。

panoptic数据集的instance统计

实例统计信息是专属于全景数据集的。为此,我们提供了list_panoptic_instances()函数。你可以将sort_by设置为[‘count’, ‘index’, ‘name’]之一。该函数将计算每帧的实例数,实例总数(唯一的对象ID)和实例状态(一个实例可能有多个状态)。它还计算每个类别的统计数据,包括一个实例跨越的帧数的平均值和标准偏差,以及每个实例的点数的平均值和标准偏差。

nusc.list_panoptic_instances(sort_by='count')

输出结果:

8644c30375022867f11a7b99c906b4f9.png

获取lidarseg和panoptic的sample token的统计信息⭐⭐⭐

  首先,让我们获取一个sample。

my_sample = nusc.sample[5]


# nuscenes-lidarseg
nusc.get_sample_lidarseg_stats(my_sample['token'], sort_by='count')

输出结果:b66f6a0dd030376e5e488b219006bd9b.png

类似地,通过添加gt_from='panoptic',我们可以使用相同的函数来使用panoptic数据集获得类别频率计数。正如在list_lidarseg_categories()中提到的,点计数可能与lidarseg稍有不同,这是因为在nuscens -panoptic中,多个实例的重叠点被设置为noise。

# nuscenes-panoptic
nusc.get_sample_lidarseg_stats(my_sample['token'], sort_by='count', gt_from='panoptic')

输出结果:4fb495bbabfa4a3e1a119a2fd9abd022.png

渲染lidarseg标签⭐⭐⭐

在最初的nuScenes devkit中,即我们上一节所介绍的数据集中,您可以将一个sample_data_token传递到render_sample_data中,以呈现点云的鸟瞰图。这些点会根据与自我车的距离被着色。现在有了扩展的nuScenes devkit,您所需要做的就是设置show_lidarseg=True来显示pointcloud的类标签。【这里你也可以设置with_anns = Ture,看看和with_anns=False的区别】

sample_data_token = my_sample['data']['LIDAR_TOP']
nusc.render_sample_data(sample_data_token,
                        with_anns=False,
                        show_lidarseg=True)

输出结果:

61cd330562594637f547c4d29d1f4436.png

  但如果你只想专注于特定的类别呢?考虑到前面打印的点云统计信息,假设您只对卡车和汽车感兴趣。你可以从统计数据中看到属于这些类的类索引【汽车的索引为17,卡车的索引为23】,然后将这些索引的数组传递到filter_lidarseg_labels中,如下所示:

nusc.render_sample_data(sample_data_token,
                        with_anns=False,
                        show_lidarseg=True,
                        filter_lidarseg_labels=[17, 23])

输出结果:

885dd40b38592f90723d0725fd75311d.png

  如上图所示,现在只有属于卡车和拖车的点云中的点被过滤出来,以满足您的观看需求。此外,还可以使用show_lidarseg_legend显示一个图例,该图例指示每个类的颜色。

输出结果:

7c59fba9625cbd8a8cf9227b8c6677fa.png

渲染panoptic标签⭐⭐⭐

与lidarseg类似,也使用相同的函数来呈现panoptic标签(全景标签)。参数的区别是show_panoptic=True。默认情况下,show_lidarseg和show_panoptic都被设置为False。如果两者都设置为True,即show_lidarseg=True, show_panoptic=True, lidarseg将会优先渲染。

sample_data_token = my_sample['data']['LIDAR_TOP']
nusc.render_sample_data(sample_data_token,
                        with_anns=False,
                        show_lidarseg=False,
                        show_panoptic=True)

输出结果:

3b7982942cf278948812e48cb22eccb5.png

你可以看到同一类别的不同的车辆实例,会显示不同的颜色。类似地,您可以使用filter_lidarseg_labels和show_lidarseg_legend=True来显示特定事物和物品类别的全景标签,以及类别图例。注意这两个参数在lidarseg和panoptic数据集之间也是共享的。

# show trucks and car
nusc.render_sample_data(sample_data_token,
                        with_anns=False,
                        show_panoptic=True,
                        filter_lidarseg_labels=[17, 23])

输出结果:

be4c452ac1f6fa17697ae7a22a4946e2.png

# show stuff category legends
nusc.render_sample_data(sample_data_token,
                        with_anns=False,
                        show_lidarseg=False,
                        show_lidarseg_legend=True,
                        show_panoptic=True)

输出结果:

93c79c74d91097316a3217ed043831ae.png

在图像中渲染lidarseg和panoptic 标签⭐⭐⭐

 如果你想要将点云叠加到相机对应的图像中,你可以像使用原始nuScenes devkit一样使用render_pointcloud_in_image,但是要设置show_lidarseg=True(记住要设置render_intensity=False)。与render_sample_data类似,您可以使用filter_lidarseg_labels过滤查看特定的类。您可以使用show_lidarseg_legend在渲染中显示一个图例。

# nuscenes-lidarseg
nusc.render_pointcloud_in_image(my_sample['token'],
                                pointsensor_channel='LIDAR_TOP',
                                camera_channel='CAM_FRONT',
                                render_intensity=False,
                                show_lidarseg=True,
                                filter_lidarseg_labels=[17, 23, 24],
                                show_lidarseg_legend=True)

输出结果:

f967afd03f5b711a81677ed98b025e40.png

  同样,这个函数支持show_panoptic=True模式,将显示全景标签而不是语义标签。只显示物品类别的图例。【对语义标签和全景标签不清楚的戳传送门了解详情】

# nuscenes-panoptic
nusc.render_pointcloud_in_image(my_sample['token'],
                                pointsensor_channel='LIDAR_TOP',
                                camera_channel='CAM_FRONT',
                                render_intensity=False,
                                show_lidarseg=False,
                                filter_lidarseg_labels=[17, 23, 24],
                                show_lidarseg_legend=True,
                                show_panoptic=True)

3f016a867fcc6e40636164f038802de1.png

渲染sample(例如lidar、radar and all camera)⭐⭐⭐

就像在原始的nuScenes devkit中一样,可以使用render_sample一次渲染所有的传感器。在扩展的nuScenes devkit中,你可以设置show_lidarseg=True来查看lidarseg标签。与上面的方法类似,您可以使用filter_lidarseg_labels只显示您希望看到的类。

# nuscenes-lidarseg
nusc.render_sample(my_sample['token'],
                   show_lidarseg=True,
                   filter_lidarseg_labels=[17, 23])

输出结果:

d1524609f2b47bfd3b2de806b1189de8.png

  要使用render_sample显示panoptic标签,只需设置show_panoptic=True

# nuscenes-panoptic
nusc.render_sample(my_sample['token'],
                   show_lidarseg=False,
                   filter_lidarseg_labels=[17, 23],
                   show_panoptic=True)

输出结果:

db97ef083d8eac1540047257b3b62583.png

使用lidarseg/panoptic标签为给定的相机传感器渲染场景

  你也可以使用你选择的相机的lidarseg标签来渲染整个场景(filter_lidarseg_labels参数也可以在这里使用)。让我们先选一个场景:

my_scene = nusc.scene[0]

然后我们将scene token传递给render_scene_channel_lidarseg,这里设置了filter_lidarseg_labels=[18, 28],表示我们只对建筑车辆和人造物体感兴趣(在这里,我们设置verbose=True来生成一个窗口,让我们可以看到随机的帧)。此外,您还可以使用dpi(调整激光雷达点的大小)和imsize(调整渲染图像的大小)来调整渲染的美学效果。

# nuscenes-lidarseg
import os
nusc.render_scene_channel_lidarseg(my_scene['token'], 
                                   'CAM_FRONT', 
                                   filter_lidarseg_labels=[18, 28],
                                   verbose=True, 
                                   dpi=100,
                                   imsize=(1280, 720))

  通过添加show_panoptic=True,这个函数也适用于panoptic标签。

# # nuscenes-panoptic
import os
nusc.render_scene_channel_lidarseg(my_scene['token'], 
                                   'CAM_BACK', 
                                   filter_lidarseg_labels=[18, 24, 28],
                                   verbose=True, 
                                   dpi=100,
                                   imsize=(1280, 720),
                                   show_panoptic=True)

  需要注意的是,这里的输出结果都是视频,这里不好进行展示,大家自己操作时就明白了。当然,我们可以通过out_folder参数传递一个路径到你想要保存视频的文件夹。

# nuscenes-lidarseg
nusc.render_scene_channel_lidarseg(my_scene['token'],
                                   'CAM_BACK',
                                   filter_lidarseg_labels=[18, 28],
                                   verbose=True,
                                   dpi=100,
                                   imsize=(1280, 720),
                                   render_mode='video',
                                   out_folder=os.path.expanduser('video_image'))

渲染场景的所有cameras与lidarseg/panoptic标签

  你可以用lidarseg标签为所有相机一次性渲染整个场景作为视频。假设在这种情况下,我们对属于driveable surfaces 和 cars【即标签为17、24】的点感兴趣。

# nuscenes-lidarseg
import os
nusc.render_scene_lidarseg(my_scene['token'], 
                           filter_lidarseg_labels=[17, 24],
                           verbose=True,
                           dpi=100,
                           out_path=os.path.expanduser('video_image//my_rendered_scene.avi'))

  这和上面的一样都为视频,大家练习时自行观看。


可视化激光雷达分割预测

在以上所有函数中,已经渲染的LiDAR点云的标签都是ground truth。如果您已经训练了一个模型来分割LiDAR点云,并在nuScenes-lidarseg数据集上运行它,您也可以使用nuScenes-lidarseg可视化您的模型的预测!你的每个.bin文件应该是numpy.uint8数组。

import os
my_sample = nusc.sample[80]
sample_data_token = my_sample['data']['LIDAR_TOP']
my_predictions_bin_file = os.path.join('data\\sets\\nuscenes\\lidarseg\\v1.0-mini', sample_data_token + '_lidarseg.bin')
nusc.render_pointcloud_in_image(my_sample['token'],
                                pointsensor_channel='LIDAR_TOP',
                                camera_channel='CAM_BACK',
                                render_intensity=False,
                                show_lidarseg=True,
                                filter_lidarseg_labels=[22, 23],
                                show_lidarseg_legend=True,
                                lidarseg_preds_bin_path=my_predictions_bin_file)

输出结果:

8ade58b1350c28e65e7122932db065de.png


可视化激光雷达全景预测

  类似地,全景预测结果也可以被渲染!每个.npz文件都应该是一个压缩的 numpy.uint16数组

import os
my_sample = nusc.sample[87]
sample_data_token = my_sample['data']['LIDAR_TOP']
my_predictions_bin_file = os.path.join('/data/sets/nuscenes/panoptic/v1.0-mini', sample_data_token + '_panoptic.npz')
nusc.render_pointcloud_in_image(my_sample['token'],
                                pointsensor_channel='LIDAR_TOP',
                                camera_channel='CAM_BACK',
                                render_intensity=False,
                                show_lidarseg=False,
                                filter_lidarseg_labels=[17,22, 23, 24],
                                show_lidarseg_legend=True,
                                lidarseg_preds_bin_path=my_predictions_bin_file,
                                show_panoptic=True)

输出结果:

3658df1395ac91f9375a57740aec3c9d.png

总结

最后了,说点什么呢,上面这些东西你看是很难看明白的,自己动手多敲一敲,哪里不明白敲敲代码看看输出的结果,好记性不如烂笔头,加油各位📝📝📝阅读此文章前建议先看看上一节文章:对Nuscenes数据集一无所知,手把手带你玩转Nusences数据集


这部分官方是给了参考的代码的,可以再Google colab上直接运行,这里给出官方的链接:Nuscenes使用教程,但是我想大家还是自己敲一敲会印象更加深刻🀄🀄🀄


相关文章
|
编解码 缓存 并行计算
YOLOv5入门实践(4)——手把手教你训练自己的数据集
YOLOv5入门实践(4)——手把手教你训练自己的数据集
2232 0
YOLOv5入门实践(4)——手把手教你训练自己的数据集
|
3月前
|
人工智能 API 知识图谱
使用SiliconCloud尝试GraphRag——以《三国演义》为例(手把手教程,适合小白)
本文介绍了使用不同模型和平台体验GraphRAG的过程。首先通过OpenAI的GPT-4O Mini模型对沈从文的《边城》进行了分析,展示了如何安装GraphRAG并配置参数,最终实现了对文本的有效查询。随后,文章探讨了在国内环境下使用SiliconCloud作为替代方案的可能性,以《三国演义》为例,演示了使用SiliconCloud模型进行相同操作的步骤。此外,还讨论了使用本地模型如Ollama和LM Studio的可能性,尽管受限于硬件条件未能实际运行。最后,提出了混合使用在线对话模型API与本地或在线嵌入模型的方法,并列举了一些能够使GraphRAG流程跑通的大模型。
130 10
使用SiliconCloud尝试GraphRag——以《三国演义》为例(手把手教程,适合小白)
|
XML 数据格式 Python
YOLOv5入门实践(3)——手把手教你划分自己的数据集
YOLOv5入门实践(3)——手把手教你划分自己的数据集
3692 0
YOLOv5入门实践(3)——手把手教你划分自己的数据集
|
6月前
|
机器学习/深度学习 算法 Python
深入浅出Python机器学习:从零开始的SVM教程/厾罗
深入浅出Python机器学习:从零开始的SVM教程/厾罗
|
XML 计算机视觉 数据格式
YOLOv5入门实践(2)——手把手教你利用labelimg标注数据集
YOLOv5入门实践(2)——手把手教你利用labelimg标注数据集
6827 1
YOLOv5入门实践(2)——手把手教你利用labelimg标注数据集
|
机器学习/深度学习 存储 算法
python机器学习课程——决策树全网最详解超详细笔记附代码
决策树算法是一种逼近离散函数值的方法。它是一种典型的分类方法,首先对数据进行处理,利用归纳算法生成可读的规则和决策树,然后使用决策对新数据进行分析。本质上决策树是通过一系列规则对数据进行分类的过程。决策树方法最早产生于上世纪60年代,到70年代末。由J Ross Quinlan提出了ID3算法,此算法的目的在于减少树的深度。但是忽略了叶子数目的研究。C4.5算法在ID3算法的基础上进行了改进,对于预测变量的缺值处理、剪枝技术、派生规则等方面作了较大改进,既适合于分类问题,又适合于回归问题。决策树算法构造决策
364 0
|
机器学习/深度学习 自然语言处理 并行计算
Pytorch学习系列教程:入门简介
新的一年还是要肝起来啊,这个公众号节前节后沉寂了快两个月了,许久没更新原创推文,自己感觉不能再这样堕落下去了。所以最近一直在思考写些什么推文:既要符合当下工作所需,倒逼成长;也要于广大读者有益,而非单纯的推销运营。 于是,终于决定“染指”深度学习方向,并打算先更新一波Pytorch学习教程。当然,这会是一个系列。
259 0
Pytorch学习系列教程:入门简介
|
机器学习/深度学习 算法
Dataset之mushroom:mushroom蘑菇数据集的简介、下载、使用方法之详细攻略
Dataset之mushroom:mushroom蘑菇数据集的简介、下载、使用方法之详细攻略
|
机器学习/深度学习 人工智能 资源调度
Dataset之RentListingInquries:RentListingInquries(Kaggle竞赛)数据集的简介、下载、案例应用之详细攻略
Dataset之RentListingInquries:RentListingInquries(Kaggle竞赛)数据集的简介、下载、案例应用之详细攻略
Dataset之RentListingInquries:RentListingInquries(Kaggle竞赛)数据集的简介、下载、案例应用之详细攻略