基于Tensorflow2.x Object Detection API构建自定义物体检测器

简介: 基于Tensorflow2.x Object Detection API构建自定义物体检测器的保姆级教程,详细地描述了代码框架结构、数据集的标准方法,标注文件的数据处理、模型流水线的配置、模型的训练、评估、推理全流程。
  • 作者简介:关注AIoT领域的嵌入式开发一枚
  • 本文由机器未来原创,首发在CSDN
  • 订阅专栏:从零开始玩转物体检测系列
  • 面向人群:具备深度学习理论基础的学生或初级开发者
  • 专栏计划:接下来会逐步发布跨入人工智能的系列博文,尽情期待

    • 14天快速入门Python系列
    • 快速入门Python数据科学系列
    • 人工智能开发环境搭建系列
    • 机器学习系列
    • 从零玩转物体检测系列
    • 自动驾驶物体检测系列
    • ......
  • 💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞

1. 概述

tensorflow object detection api一个框架,它可以很容易地构建、训练和部署对象检测模型,并且是一个提供了众多基于COCO数据集、Kitti数据集、Open Images数据集、AVA v2.1数据集和iNaturalist物种检测数据集上提供预先训练的对象检测模型集合。

tensorflow object detection api是目前最主流的目标检测框架之一,主流的目标检测模型如图所示:
snipaste20220513_094828

本文描述了基于Tensorflow2.x Object Detection API构建自定义物体检测器的保姆级教程,详细地描述了代码框架结构、数据集的标准方法,标注文件的数据处理、模型流水线的配置、模型的训练、评估、推理全流程。

最终的测试效果如下:标注物体的位置、物体的类型及置信度。

raccoon-28

2. 组织工程文档结构

  • 创建父目录

创建tensorflow文件夹,将下载的object detection api源码models目录拷贝到tensorflow目录下,结构如下:

TensorFlow/
└─ models/
   ├─ community/
   ├─ official/
   ├─ orbit/
   ├─ research/
   └─ ...
AI 代码解读
  • 创建工作区
cd tensorflow;
mkdir training_demo ;cd training_demo;
AI 代码解读

创建完毕后的文档组织结构如下:

TensorFlow/
├─ models/
│  ├─ community/
│  ├─ official/
│  ├─ orbit/
│  ├─ research/
│  └─ ...
└─ workspace/
   └─ training_demo/
AI 代码解读
  • 项目目录
mkdir annotations exported-models images/ images/test/ images/train/ models/ pre_trained_models/;
touch README.md
AI 代码解读

创建完毕后的项目结构如下

training_demo/
├─ annotations/                # annotations存标签映射文件和转换后的TFRecord文件
├─ exported_models/        # 存放训练完毕后导出的模型文件
├─ images/                    # 存放原始图像数据文件
│  ├─ test/                        # 存放评估图像数据集和标注文件集
│  └─ train/                    # 存放训练图像数据集和标注文件集
├─ models/                    # 存放训练中的pipline.config、模型数据、tensorboard事件数据
├─ pre_trained_models/    # 存放下载的预训练模型
└─ README.md            # 工程说明文档
AI 代码解读

3. 标注数据集

  • 标注工具labelImg

  • 标注示例
  • 0318-2
  • 标注后的xml文件统一存放到training_demo/images目录下
  • 划分训练、评估数据集

首先创建一个公共目录tensorflow/scripts/preprocessing用于存放脚本,偏于将来复用

mkdir tensorflow/scripts
mkdir tensorflow/scripts/preprocessing
AI 代码解读

创建完成后的目录结构如下:

tensorflow/
├─ models/
│  ├─ community/
│  ├─ official/
│  ├─ orbit/
│  ├─ research/
│  └─ ...
├─ scripts/
│  └─ preprocessing/
└─ workspace/
   └─ training_demo/
AI 代码解读

在tensorflow/scripts/preprocessing目录下添加训练集划分脚本partition_dataset.py,脚本内容如下:

""" usage: partition_dataset.py [-h] [-i IMAGEDIR] [-o OUTPUTDIR] [-r RATIO] [-x]

Partition dataset of images into training and testing sets

optional arguments:
  -h, --help            show this help message and exit
  -i IMAGEDIR, --imageDir IMAGEDIR
                        Path to the folder where the image dataset is stored. If not specified, the CWD will be used.
  -o OUTPUTDIR, --outputDir OUTPUTDIR
                        Path to the output folder where the train and test dirs should be created. Defaults to the same directory as IMAGEDIR.
  -r RATIO, --ratio RATIO
                        The ratio of the number of test images over the total number of images. The default is 0.1.
  -x, --xml             Set this flag if you want the xml annotation files to be processed and copied over.
"""
import os
import re
from shutil import copyfile
import argparse
import math
import random


def iterate_dir(source, dest, ratio, copy_xml):
    source = source.replace('\\', '/')
    dest = dest.replace('\\', '/')
    train_dir = os.path.join(dest, 'train')
    test_dir = os.path.join(dest, 'test')

    if not os.path.exists(train_dir):
        os.makedirs(train_dir)
    if not os.path.exists(test_dir):
        os.makedirs(test_dir)

    images = [f for f in os.listdir(source)
              if re.search(r'([a-zA-Z0-9\s_\\.\-\(\):])+(?i)(.jpg|.jpeg|.png)$', f)]

    num_images = len(images)
    num_test_images = math.ceil(ratio*num_images)

    for i in range(num_test_images):
        idx = random.randint(0, len(images)-1)
        filename = images[idx]
        copyfile(os.path.join(source, filename),
                 os.path.join(test_dir, filename))
        if copy_xml:
            xml_filename = os.path.splitext(filename)[0]+'.xml'
            copyfile(os.path.join(source, xml_filename),
                     os.path.join(test_dir,xml_filename))
        images.remove(images[idx])

    for filename in images:
        copyfile(os.path.join(source, filename),
                 os.path.join(train_dir, filename))
        if copy_xml:
            xml_filename = os.path.splitext(filename)[0]+'.xml'
            copyfile(os.path.join(source, xml_filename),
                     os.path.join(train_dir, xml_filename))


def main():

    # Initiate argument parser
    parser = argparse.ArgumentParser(description="Partition dataset of images into training and testing sets",
                                     formatter_class=argparse.RawTextHelpFormatter)
    parser.add_argument(
        '-i', '--imageDir',
        help='Path to the folder where the image dataset is stored. If not specified, the CWD will be used.',
        type=str,
        default=os.getcwd()
    )
    parser.add_argument(
        '-o', '--outputDir',
        help='Path to the output folder where the train and test dirs should be created. '
             'Defaults to the same directory as IMAGEDIR.',
        type=str,
        default=None
    )
    parser.add_argument(
        '-r', '--ratio',
        help='The ratio of the number of test images over the total number of images. The default is 0.1.',
        default=0.1,
        type=float)
    parser.add_argument(
        '-x', '--xml',
        help='Set this flag if you want the xml annotation files to be processed and copied over.',
        action='store_true'
    )
    args = parser.parse_args()

    if args.outputDir is None:
        args.outputDir = args.imageDir

    # Now we are ready to start the iteration
    iterate_dir(args.imageDir, args.outputDir, args.ratio, args.xml)


if __name__ == '__main__':
    main()
AI 代码解读

执行脚本:

python partition_dataset.py -x -i [PATH_TO_IMAGES_FOLDER] -r [test_dataset ratio]
AI 代码解读

示例:

python partition_dataset.py -x -i ../../training_demo/images/ -r 0.1
# -x 表明输入文件格式是xml文件
# -i 指定图像文件所在目录
# -r 指定训练集、评估集切分比例,0.1代表评估集占比10%
AI 代码解读

4. 创建标签分类映射文件

training_demo/annotations目录下创建label_map.pbtxt,内容为标签分类及ID, 示例如下:

item {
    id: 1
    name: 'cat'
}

item {
    id: 2
    name: 'dog'
}
AI 代码解读

示例表明数据集一共有2个类别,分别为cat和dog,分配的分类ID分别为1和2

5. 将标注数据xml文件转换为record格式文件

  • 脚本内容如下:
""" Sample TensorFlow XML-to-TFRecord converter

usage: generate_tfrecord.py [-h] [-x XML_DIR] [-l LABELS_PATH] [-o OUTPUT_PATH] [-i IMAGE_DIR] [-c CSV_PATH]

optional arguments:
  -h, --help            show this help message and exit
  -x XML_DIR, --xml_dir XML_DIR
                        Path to the folder where the input .xml files are stored.
  -l LABELS_PATH, --labels_path LABELS_PATH
                        Path to the labels (.pbtxt) file.
  -o OUTPUT_PATH, --output_path OUTPUT_PATH
                        Path of output TFRecord (.record) file.
  -i IMAGE_DIR, --image_dir IMAGE_DIR
                        Path to the folder where the input image files are stored. Defaults to the same directory as XML_DIR.
  -c CSV_PATH, --csv_path CSV_PATH
                        Path of output .csv file. If none provided, then no file will be written.
"""

import os
import glob
import pandas as pd
import io
import xml.etree.ElementTree as ET
import argparse

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'    # Suppress TensorFlow logging (1)
import tensorflow.compat.v1 as tf
from PIL import Image
from object_detection.utils import dataset_util, label_map_util
from collections import namedtuple

# Initiate argument parser
parser = argparse.ArgumentParser(
    description="Sample TensorFlow XML-to-TFRecord converter")
parser.add_argument("-x",
                    "--xml_dir",
                    help="Path to the folder where the input .xml files are stored.",
                    type=str)
parser.add_argument("-l",
                    "--labels_path",
                    help="Path to the labels (.pbtxt) file.", type=str)
parser.add_argument("-o",
                    "--output_path",
                    help="Path of output TFRecord (.record) file.", type=str)
parser.add_argument("-i",
                    "--image_dir",
                    help="Path to the folder where the input image files are stored. "
                         "Defaults to the same directory as XML_DIR.",
                    type=str, default=None)
parser.add_argument("-c",
                    "--csv_path",
                    help="Path of output .csv file. If none provided, then no file will be "
                         "written.",
                    type=str, default=None)

args = parser.parse_args()

if args.image_dir is None:
    args.image_dir = args.xml_dir

label_map = label_map_util.load_labelmap(args.labels_path)
label_map_dict = label_map_util.get_label_map_dict(label_map)


def xml_to_csv(path):
    """Iterates through all .xml files (generated by labelImg) in a given directory and combines
    them in a single Pandas dataframe.

    Parameters:
    ----------
    path : str
        The path containing the .xml files
    Returns
    -------
    Pandas DataFrame
        The produced dataframe
    """

    xml_list = []
    for xml_file in glob.glob(path + '/*.xml'):
        tree = ET.parse(xml_file)
        root = tree.getroot()
        filename = root.find('filename').text
        width = int(root.find('size').find('width').text)
        height = int(root.find('size').find('height').text)
        for member in root.findall('object'):
            bndbox = member.find('bndbox')
            value = (filename,
                     width,
                     height,
                     member.find('name').text,
                     int(bndbox.find('xmin').text),
                     int(bndbox.find('ymin').text),
                     int(bndbox.find('xmax').text),
                     int(bndbox.find('ymax').text),
                     )
            xml_list.append(value)
    column_name = ['filename', 'width', 'height',
                   'class', 'xmin', 'ymin', 'xmax', 'ymax']
    xml_df = pd.DataFrame(xml_list, columns=column_name)
    return xml_df


def class_text_to_int(row_label):
    return label_map_dict[row_label]


def split(df, group):
    data = namedtuple('data', ['filename', 'object'])
    gb = df.groupby(group)
    return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)]


def create_tf_example(group, path):
    with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
        encoded_jpg = fid.read()
    encoded_jpg_io = io.BytesIO(encoded_jpg)
    image = Image.open(encoded_jpg_io)
    width, height = image.size

    filename = group.filename.encode('utf8')
    image_format = b'jpg'
    xmins = []
    xmaxs = []
    ymins = []
    ymaxs = []
    classes_text = []
    classes = []

    for index, row in group.object.iterrows():
        xmins.append(row['xmin'] / width)
        xmaxs.append(row['xmax'] / width)
        ymins.append(row['ymin'] / height)
        ymaxs.append(row['ymax'] / height)
        classes_text.append(row['class'].encode('utf8'))
        classes.append(class_text_to_int(row['class']))

    tf_example = tf.train.Example(features=tf.train.Features(feature={
        'image/height': dataset_util.int64_feature(height),
        'image/width': dataset_util.int64_feature(width),
        'image/filename': dataset_util.bytes_feature(filename),
        'image/source_id': dataset_util.bytes_feature(filename),
        'image/encoded': dataset_util.bytes_feature(encoded_jpg),
        'image/format': dataset_util.bytes_feature(image_format),
        'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
        'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
        'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
        'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
        'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
        'image/object/class/label': dataset_util.int64_list_feature(classes),
    }))
    return tf_example


def main(_):

    writer = tf.python_io.TFRecordWriter(args.output_path)
    path = os.path.join(args.image_dir)
    examples = xml_to_csv(args.xml_dir)
    grouped = split(examples, 'filename')
    for group in grouped:
        tf_example = create_tf_example(group, path)
        writer.write(tf_example.SerializeToString())
    writer.close()
    print('Successfully created the TFRecord file: {}'.format(args.output_path))
    if args.csv_path is not None:
        examples.to_csv(args.csv_path, index=None)
        print('Successfully created the CSV file: {}'.format(args.csv_path))


if __name__ == '__main__':
    tf.app.run()
AI 代码解读
  • 注意事项

在使用脚本之前,请确认已经安装了pandas,使用脚本确认是否安装,如下命令显示版本号即为安装:

root@cc58e655b170# python -c "import pandas as pd;print(pd.__version__)"
1.4.1
AI 代码解读

未安装时,可以按照当前环境安装

conda install pandas # Anaconda
                     # or
pip install pandas   # pip
AI 代码解读
  • 脚本调用格式
# Create train data:
python generate_tfrecord.py -x [PATH_TO_IMAGES_FOLDER]/train -l [PATH_TO_ANNOTATIONS_FOLDER]/label_map.pbtxt -o [PATH_TO_ANNOTATIONS_FOLDER]/train.record

# Create test data:
python generate_tfrecord.py -x [PATH_TO_IMAGES_FOLDER]/test -l [PATH_TO_ANNOTATIONS_FOLDER]/label_map.pbtxt -o [PATH_TO_ANNOTATIONS_FOLDER]/test.record
AI 代码解读
  • 使用脚本转换train、test数据集
# For example
root@cc58e655b170:/home/zhou/tensorflow/workspace/scripts/preprocessing# python generate_tfrecord.py -x ../../training_demo/images/train/ -l ../../training_demo/annotations/label_map.pbtxt -o ../../training_demo/annotations/train.record
Successfully created the TFRecord file: ../../training_demo/annotations/train.record

root@cc58e655b170:/home/zhou/tensorflow/workspace/scripts/preprocessing# python generate_tfrecord.py -x ../../training_demo/images/test/ -l ../../training_demo/annotations/label_map.pbtxt -o ../../training_demo/annotations/test.record
Successfully created the TFRecord file: ../../training_demo/annotations/test.record
AI 代码解读

脚本执行完毕后,在training_demo/annotations目录下会生成train.record和test.record文件

root@cc58e655b170:/home/zhou/tensorflow/workspace/scripts/preprocessing# ls ../../training_demo/annotations/
label_map.pbtxt  test.record  train.record
AI 代码解读

6. 配置训练流水线

6.1 下载预训练模型

使用wget命令行下载预训练detection模型

wget -c http://download.tensorflow.org/models/object_detection/tf2/20200711/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz
AI 代码解读

如果提示找不到wget命令,使用apt工具安装

apt install wget
AI 代码解读

特别注意:此处下载的模型为detection模型,pipline.config中的fine_tune_checkpoint_type:配置为"detection"才有效,否则会报错

6.2 解压缩预训练模型

使用tar命令tar zxvf ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz解压预训练模型

root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo/pre_trained_models# tar zxvf ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8.tar.gz 
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/checkpoint/
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/checkpoint/ckpt-0.data-00000-of-00001
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/checkpoint/checkpoint
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/checkpoint/ckpt-0.index
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/pipeline.config
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model/
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model/saved_model.pb
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model/assets/
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model/variables/
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model/variables/variables.data-00000-of-00001
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/saved_model/variables/variables.index
AI 代码解读

解压后预训练模型在training_demo/pre_trained_models目录下:

root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo/pre_trained_models# ls
ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8
AI 代码解读

预训练模型的目录结构如下

training_demo/
├─ ...
├─ pre_trained_models/
│  └─ ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/
│     ├─ checkpoint/
│     ├─ saved_model/
│     └─ pipeline.config
└─ ...
AI 代码解读

6.3 配置预训练模型

  • 拷贝流水线文件到指定目录

training_demo/models目录下创建my_ssd_resnet50_v1_fpn目录,将流水线配置文件training_demo/pre_trained_models/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/pipeline.config 拷贝到该目录下,拷贝后的目录结构如下

training_demo/
├─ ...
├─ models/
│  └─ my_ssd_resnet50_v1_fpn/
│     └─ pipeline.config
└─ ...
AI 代码解读
  • 配置pipline.config

相关的配置项及描述如下代码所示:

model {
  ssd {
    num_classes: 2     # num_classes为自定义对象检测器所检测的物体分类总数,此处为2
    image_resizer {
      fixed_shape_resizer {
        height: 640
        width: 640
      }
    }

......

train_config {
  batch_size: 8             # batch_size依赖可用的内存,可根据需要添加或减少,且至少保证大于样本数
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
 
 ......
 
  # fine_tune_checkpoint为预训练模型的文件路径配置
  fine_tune_checkpoint: "pre_trained_models/ssd_mobilenet_v2_fpnlite_640x640_coco17_tpu-8/checkpoint/ckpt-0"
  num_steps: 2000         # num_steps为训练的epochs的数量
  startup_delay_steps: 0.0
  replicas_to_aggregate: 8
  max_number_of_boxes: 100
  unpad_groundtruth_tensors: false
  fine_tune_checkpoint_type: "detection"    # 因为要训练完整的检测模型,这里填写detection,而不是classification
  use_bfloat16: false                       # 使用TPU训练时置为true
  fine_tune_checkpoint_version: V2
}

train_input_reader {
  label_map_path: "annotations/label_map.pbtxt" # 配置标签映射文件
  tf_record_input_reader {
    input_path: "annotations/train.record"      # 配置待训练的训练集TFRecord 文件
  }
}

......

eval_input_reader {
  label_map_path: "annotations/label_map.pbtxt" # 配置标签映射文件
  shuffle: false
  num_epochs: 1
  tf_record_input_reader {
    input_path: "annotations/test.record"        # 配置待训练的测试集TFRecord 文件   
  }
}
AI 代码解读

7. 训练模型

7.1 拷贝脚本到工程目录

拷贝models/research/object_detection/model_main_tf2.pytraining_demo目录

root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo# cp ../../models/research/object_detection/model_main_tf2.py .
root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo# ls
README.md  annotations  exported-models  images  model_main_tf2.py  models  pre_trained_models
AI 代码解读

7.2 训练模型

python model_main_tf2.py --model_dir=models/ssd_mobilenet_v1_fpn --pipeline_config_path=models/my_ssd_resnet50_v1_fpn/pipeline.config
AI 代码解读

训练输出如下所示:

2022-03-18 16:31:18.185503: W tensorflow/core/common_runtime/bfc_allocator.cc:275] Allocator (GPU_0_bfc) ran out of memory trying to allocate 2.05GiB with freed_by_count=0. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
INFO:tensorflow:Step 100 per-step time 0.690s
I0318 16:31:54.968108 140508069689152 model_lib_v2.py:705] Step 100 per-step time 0.690s
INFO:tensorflow:{'Loss/classification_loss': 0.5467333,
 'Loss/localization_loss': 0.62460774,
 'Loss/regularization_loss': 0.37178832,
 'Loss/total_loss': 1.5431294,
 'learning_rate': 0.014666351}
I0318 16:31:54.968450 140508069689152 model_lib_v2.py:708] {'Loss/classification_loss': 0.5467333,
 'Loss/localization_loss': 0.62460774,
 'Loss/regularization_loss': 0.37178832,
 'Loss/total_loss': 1.5431294,
 'learning_rate': 0.014666351}
AI 代码解读

7.2.1 训练模型过程中遇到的问题:

6.2.1.1 ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 96 from C header, got 88 from PyObject
  • 解决办法:

    • 查看numpy、pycocotools版本
  root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo# python -c "import numpy as np;print(np.__version__)"
  1.21.5

  root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo# python -m pip show pycocotools 
  Name: pycocotools
  Version: 2.0.5
  Summary: Official APIs for the MS-COCO dataset
  Home-page: None
  Author: None
  Author-email: None
  License: UNKNOWN
  Location: /usr/local/lib/python3.8/dist-packages
  Requires: cython, matplotlib, setuptools
  Required-by: tf-models-official, object-detection
AI 代码解读

numpy的版本为1.21.5,pycocotools 的版本为2.0.5,将pycocotools 的版本降为2.0.1可以解决问题

        pip install --upgrade pycocotools==2.0.1
AI 代码解读

7.2.1.2 模型输入输出访问错误: Input/output error [Op:SaveV2]

I0320 12:47:20.331673 139707635332928 model_lib_v2.py:705] Step 1000 per-step time 0.433s
INFO:tensorflow:{'Loss/classification_loss': 0.26997942,
 'Loss/localization_loss': 0.30341092,
 'Loss/regularization_loss': 2.2776012,
 'Loss/total_loss': 2.8509917,
 'learning_rate': 0.0266665}
I0320 12:47:20.331962 139707635332928 model_lib_v2.py:708] {'Loss/classification_loss': 0.26997942,
 'Loss/localization_loss': 0.30341092,
 'Loss/regularization_loss': 2.2776012,
 'Loss/total_loss': 2.8509917,
 'learning_rate': 0.0266665}
2022-03-20 12:47:23.322429: W tensorflow/core/framework/op_kernel.cc:1745] OP_REQUIRES failed at save_restore_v2_ops.cc:138 : UNKNOWN: models/my_ssd_resnet50_v1_fpn/ckpt-3_temp/part-00000-of-00001.data-00000-of-00001.tempstate1791880307736640246; Input/output error
Traceback (most recent call last):
  File "model_main_tf2.py", line 115, in <module>
    tf.compat.v1.app.run()
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/platform/app.py", line 36, in run
    _run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
  File "/usr/local/lib/python3.8/dist-packages/absl/app.py", line 312, in run
    _run_main(main, args)
  File "/usr/local/lib/python3.8/dist-packages/absl/app.py", line 258, in _run_main
    sys.exit(main(argv))
  File "model_main_tf2.py", line 106, in main
    model_lib_v2.train_loop(
  File "/usr/local/lib/python3.8/dist-packages/object_detection/model_lib_v2.py", line 713, in train_loop
    manager.save()
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/checkpoint_management.py", line 813, in save
    save_path = self._checkpoint.write(prefix)
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/tracking/util.py", line 2105, in write
    output = self._saver.save(file_prefix=file_prefix, options=options)
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/tracking/util.py", line 1262, in save
    save_path, new_feed_additions = self._save_cached_when_graph_building(
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/tracking/util.py", line 1206, in _save_cached_when_graph_building
    save_op = saver.save(file_prefix, options=options)
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/saving/functional_saver.py", line 371, in save
    return save_fn()
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/saving/functional_saver.py", line 345, in save_fn
    sharded_saves.append(saver.save(shard_prefix, options))
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/training/saving/functional_saver.py", line 80, in save
    return io_ops.save_v2(file_prefix, tensor_names, tensor_slices, tensors)
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_io_ops.py", line 1707, in save_v2
    return save_v2_eager_fallback(
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/ops/gen_io_ops.py", line 1728, in save_v2_eager_fallback
    _result = _execute.execute(b"SaveV2", 0, inputs=_inputs_flat, attrs=_attrs,
  File "/usr/local/lib/python3.8/dist-packages/tensorflow/python/eager/execute.py", line 54, in quick_execute
    tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
tensorflow.python.framework.errors_impl.UnknownError: models/my_ssd_resnet50_v1_fpn/ckpt-3_temp/part-00000-of-00001.data-00000-of-00001.tempstate1791880307736640246; Input/output error [Op:SaveV2]
AI 代码解读
- 解决办法:
    - 重启电脑后解决。 
AI 代码解读

7.3 tensorboard查看训练过程曲线

执行命令tensorboard --logdir=training_demo/models/ssd_mobilenet_v1_fpn/train查看tensorboard面板

root@cc58e655b170:/home/zhou/tensorflow/workspace# tensorboard --logdir=training_demo/models/my_ssd_resnet50_v1_fpn/train
2022-03-18 16:38:07.080715: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-18 16:38:07.100073: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node
Your kernel may have been built without NUMA support.
2022-03-18 16:38:07.101614: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:922] could not open file to read NUMA node: /sys/bus/pci/devices/0000:01:00.0/numa_node
Your kernel may have been built without NUMA support.

NOTE: Using experimental fast data loading logic. To disable, pass
    "--load_fast=false" and report issues on GitHub. More details:
    https://github.com/tensorflow/tensorboard/issues/4784

Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.8.0 at http://localhost:6006/ (Press CTRL+C to quit)
AI 代码解读
  • 打开浏览器,输入http://127.0.0.1:6006/#scalars,浏览器效果如图0318-1

注意事项:

  • tensorboard: error: invalid choice: ‘Recognizer\logs’ (choose from ‘serve’, ‘dev’)

    • 命令的logdir的=号两侧不可以有空格 tensorboard --logdir=[train_path]

7.4 评估模型

root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo# python model_main_tf2.py --model_dir=models/ssd_mobilenet_v1_fpn --pipeline_config_path=models/ssd_mobilenet_v1_fpn/pipeline.config --checkpoint_dir=models/ssd_mobilenet_v1_fpn
......
2022-03-18 17:10:21.973191: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3951 MB memory:  -> device: 0, name: NVIDIA GeForce GTX 1660 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5
INFO:tensorflow:Reading unweighted datasets: ['annotations/test.record']
I0318 17:10:22.271144 140242454390592 dataset_builder.py:163] Reading unweighted datasets: ['annotations/test.record']
INFO:tensorflow:Reading record datasets for input file: ['annotations/test.record']
I0318 17:10:22.272839 140242454390592 dataset_builder.py:80] Reading record datasets for input file: ['annotations/test.record']
INFO:tensorflow:Number of filenames to read: 1
I0318 17:10:22.273008 140242454390592 dataset_builder.py:81] Number of filenames to read: 1
WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards.
W0318 17:10:22.273125 140242454390592 dataset_builder.py:87] num_readers has been reduced to 1 to match input file shards.
......
INFO:tensorflow:Waiting for new checkpoint at models/my_ssd_resnet50_v1_fpn
I0318 17:10:32.268154 140242454390592 checkpoint_utils.py:136] Waiting for new checkpoint at models/my_ssd_resnet50_v1_fpn
INFO:tensorflow:Found new checkpoint at models/my_ssd_resnet50_v1_fpn/ckpt-6
I0318 17:10:32.275528 140242454390592 checkpoint_utils.py:145] Found new checkpoint at models/my_ssd_resnet50_v1_fpn/ckpt-6
/usr/local/lib/python3.8/dist-packages/keras/backend.py:450: UserWarning: `tf.keras.backend.set_learning_phase` is deprecated and will be removed after 2020-10-11. To update it, simply pass a True/False value to the `training` argument of the `__call__` method of your layer or model.
 ......
INFO:tensorflow:Performing evaluation on 2 images.
I0318 17:11:09.182368 140242454390592 coco_evaluation.py:293] Performing evaluation on 2 images.
creating index...
index created!
INFO:tensorflow:Loading and preparing annotation results...
I0318 17:11:09.182641 140242454390592 coco_tools.py:116] Loading and preparing annotation results...
INFO:tensorflow:DONE (t=0.00s)
I0318 17:11:09.182915 140242454390592 coco_tools.py:138] DONE (t=0.00s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.02s).
Accumulating evaluation results...
DONE (t=0.01s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.275
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.538
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.167
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.276
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.250
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.350
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.550
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.550
INFO:tensorflow:Eval metrics at step 1000
I0318 17:11:09.223372 140242454390592 model_lib_v2.py:1015] Eval metrics at step 1000
INFO:tensorflow:        + DetectionBoxes_Precision/mAP: 0.275370
I0318 17:11:09.227210 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Precision/mAP: 0.275370
INFO:tensorflow:        + DetectionBoxes_Precision/mAP@.50IOU: 0.538462
I0318 17:11:09.231014 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Precision/mAP@.50IOU: 0.538462
INFO:tensorflow:        + DetectionBoxes_Precision/mAP@.75IOU: 0.166667
I0318 17:11:09.233924 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Precision/mAP@.75IOU: 0.166667
INFO:tensorflow:        + DetectionBoxes_Precision/mAP (small): -1.000000
I0318 17:11:09.238049 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Precision/mAP (small): -1.000000
INFO:tensorflow:        + DetectionBoxes_Precision/mAP (medium): -1.000000
I0318 17:11:09.241585 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Precision/mAP (medium): -1.000000
INFO:tensorflow:        + DetectionBoxes_Precision/mAP (large): 0.275628
I0318 17:11:09.245546 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Precision/mAP (large): 0.275628
INFO:tensorflow:        + DetectionBoxes_Recall/AR@1: 0.250000
I0318 17:11:09.250303 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Recall/AR@1: 0.250000
INFO:tensorflow:        + DetectionBoxes_Recall/AR@10: 0.350000
I0318 17:11:09.255020 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Recall/AR@10: 0.350000
INFO:tensorflow:        + DetectionBoxes_Recall/AR@100: 0.550000
I0318 17:11:09.266462 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Recall/AR@100: 0.550000
INFO:tensorflow:        + DetectionBoxes_Recall/AR@100 (small): -1.000000
I0318 17:11:09.269966 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Recall/AR@100 (small): -1.000000
INFO:tensorflow:        + DetectionBoxes_Recall/AR@100 (medium): -1.000000
I0318 17:11:09.272413 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Recall/AR@100 (medium): -1.000000
INFO:tensorflow:        + DetectionBoxes_Recall/AR@100 (large): 0.550000
I0318 17:11:09.275286 140242454390592 model_lib_v2.py:1018]     + DetectionBoxes_Recall/AR@100 (large): 0.550000
INFO:tensorflow:        + Loss/localization_loss: 0.467712
I0318 17:11:09.278475 140242454390592 model_lib_v2.py:1018]     + Loss/localization_loss: 0.467712
INFO:tensorflow:        + Loss/classification_loss: 0.517050
I0318 17:11:09.281271 140242454390592 model_lib_v2.py:1018]     + Loss/classification_loss: 0.517050
INFO:tensorflow:        + Loss/regularization_loss: 0.373590
I0318 17:11:09.284374 140242454390592 model_lib_v2.py:1018]     + Loss/regularization_loss: 0.373590
INFO:tensorflow:        + Loss/total_loss: 1.358352
I0318 17:11:09.287869 140242454390592 model_lib_v2.py:1018]     + Loss/total_loss: 1.358352
AI 代码解读

8. 导出模型

  • 拷贝models/research/object_detection/exporter_main_v2.py脚本到training_demo目录下
root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo# cp ../../models/research/object_detection/exporter_main_v2.py .
AI 代码解读
  • 执行导出
python exporter_main_v2.py \
--input_type image_tensor \
--pipeline_config_path models/ssd_mobilenet_v1_fpn/pipeline.config \
--trained_checkpoint_dir models/ssd_mobilenet_v1_fpn \
--output_directory "exported_models/my_model"
AI 代码解读

输出如下:

2022-03-18 17:31:40.560733: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3951 MB memory:  -> device: 0, name: NVIDIA GeForce GTX 1660 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5
WARNING:tensorflow:From /usr/local/lib/python3.8/dist-packages/tensorflow/python/autograph/impl/api.py:458: calling map_fn_v2 (from tensorflow.python.ops.map_fn) with back_prop=False is deprecated and will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.map_fn(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.map_fn(fn, elems))
W0318 17:31:40.987179 139643789973312 deprecation.py:610] From /usr/local/lib/python3.8/dist-packages/tensorflow/python/autograph/impl/api.py:458: calling map_fn_v2 (from tensorflow.python.ops.map_fn) with back_prop=False is deprecated and will be removed in a future version.
Instructions for updating:
back_prop=False is deprecated. Consider using tf.stop_gradient instead.
Instead of:
results = tf.map_fn(fn, elems, back_prop=False)
Use:
results = tf.nest.map_structure(tf.stop_gradient, tf.map_fn(fn, elems))
2022-03-18 17:32:03.258760: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
WARNING:tensorflow:Skipping full serialization of Keras layer <object_detection.meta_architectures.ssd_meta_arch.SSDMetaArch object at 0x7f0064491a00>, because it is not built.
W0318 17:32:06.718129 139643789973312 save_impl.py:71] Skipping full serialization of Keras layer <object_detection.meta_architectures.ssd_meta_arch.SSDMetaArch object at 0x7f0064491a00>, because it is not built.
W0318 17:32:25.107337 139643789973312 save.py:260] Found untraced functions such as WeightSharedConvolutionalBoxPredictor_layer_call_fn, WeightSharedConvolutionalBoxPredictor_layer_call_and_return_conditional_losses, WeightSharedConvolutionalBoxHead_layer_call_fn, WeightSharedConvolutionalBoxHead_layer_call_and_return_conditional_losses, WeightSharedConvolutionalClassHead_layer_call_fn while saving (showing 5 of 208). These functions will not be directly callable after loading.
INFO:tensorflow:Assets written to: exported-models/my_model/saved_model/assets
I0318 17:32:32.900944 139643789973312 builder_impl.py:779] Assets written to: exported-models/my_model/saved_model/assets
INFO:tensorflow:Writing pipeline config file to exported-models/my_model/pipeline.config
I0318 17:32:33.612621 139643789973312 config_util.py:253] Writing pipeline config file to exported-models/my_model/pipeline.config
AI 代码解读

结构如下:

root@cc58e655b170:/home/zhou/tensorflow/workspace/training_demo# tree exported-models/my_model/
exported-models/my_model/
├── checkpoint
│   ├── checkpoint
│   ├── ckpt-0.data-00000-of-00001
│   └── ckpt-0.index
├── pipeline.config
└── saved_model
    ├── assets
    ├── saved_model.pb
    └── variables
        ├── variables.data-00000-of-00001
        └── variables.index

4 directories, 7 files
AI 代码解读

注意事项:

  • 路径不能使用反斜杠,必须使用'/'
  • 路径不可以有‘-’符号,有的话,需要使用双引号将路径引用起来,否则会报错
FATAL Flags parsing error: flag --output_directory=None: Flag --output_directory must have a value other than None.
AI 代码解读

9. 模型推理

python inference_main_v2.py -m "exported_models/my_model/saved_model" -l "annotations/label_map.pbtxt" -i "images/test" -o "inference_result/"
AI 代码解读

脚本内容如下:

#!/usr/bin/env python
# coding: utf-8
"""
Object Detection From TF2 Saved Model
=====================================
"""

# %%
# This demo will take you through the steps of running an "out-of-the-box" TensorFlow 2 compatible
# detection model on a collection of images. More specifically, in this example we will be using
# the `Saved Model Format <https://www.tensorflow.org/guide/saved_model>`__ to load the model.

# %%
# Download the test images
# ~~~~~~~~~~~~~~~~~~~~~~~~
# First we will download the images that we will use throughout this tutorial. The code snippet
# shown bellow will download the test images from the `TensorFlow Model Garden <https://github.com/tensorflow/models/tree/master/research/object_detection/test_images>`_
# and save them inside the ``data/images`` folder.
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'    # Suppress TensorFlow logging (1)
import pathlib
import tensorflow as tf
import argparse

tf.get_logger().setLevel('ERROR')           # Suppress TensorFlow logging (2)

# Enable GPU dynamic memory allocation
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)


# Initiate argument parser
parser = argparse.ArgumentParser(
    description="model inference sample")
parser.add_argument("-m",
                    "--saved_model_dir",
                    help="Path to saved model directory.",
                    type=str, default="exported_models/my_model/saved_model")
parser.add_argument("-l",
                    "--labels_path",
                    help="Path to the labels (.pbtxt) file.", type=str, default="annotations/label_map.pbtxt")
parser.add_argument("-i",
                    "--images_dir",
                    help="Path of input images file.", type=str, default="images/test")
parser.add_argument("-o",
                    "--output_inference_result",
                    help="Path of output inference result file.", type=str, default='inference_result/')
args = parser.parse_args()

# %%
# Load the model
# ~~~~~~~~~~~~~~
# Next we load the downloaded model
import time
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils

# PATH_TO_SAVED_MODEL      = "exported_models/my_model/saved_model"
# PATH_TO_LABELS           = "annotations/label_map.pbtxt"
# PATH_TO_IMAGES           = "images/test"
# PATH_TO_INFERENCE_RESULT = 'inference_result/'

PATH_TO_SAVED_MODEL      = args.saved_model_dir
PATH_TO_LABELS           = args.labels_path
PATH_TO_IMAGES           = args.images_dir
PATH_TO_INFERENCE_RESULT = args.output_inference_result

print('Loading model...', end='')
start_time = time.time()

# Load saved model and build the detection function
detect_fn = tf.saved_model.load(PATH_TO_SAVED_MODEL)

end_time = time.time()
elapsed_time = end_time - start_time
print('Done! Took {} seconds'.format(elapsed_time))

# %%
# Load label map data (for plotting)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Label maps correspond index numbers to category names, so that when our convolution network
# predicts `5`, we know that this corresponds to `airplane`.  Here we use internal utility
# functions, but anything that returns a dictionary mapping integers to appropriate string labels
# would be fine.

category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS,
                                                                    use_display_name=True)

# %%
# Putting everything together
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~
# The code shown below loads an image, runs it through the detection model and visualizes the
# detection results, including the keypoints.
#
# Note that this will take a long time (several minutes) the first time you run this code due to
# tf.function's trace-compilation --- on subsequent runs (e.g. on new images), things will be
# faster.
#
# Here are some simple things to try out if you are curious:
#
# * Modify some of the input images and see if detection still works. Some simple things to try out here (just uncomment the relevant portions of code) include flipping the image horizontally, or converting to grayscale (note that we still expect the input image to have 3 channels).
# * Print out `detections['detection_boxes']` and try to match the box locations to the boxes in the image.  Notice that coordinates are given in normalized form (i.e., in the interval [0, 1]).
# * Set ``min_score_thresh`` to other values (between 0 and 1) to allow more detections in or to filter out more detections.
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import warnings
import os

warnings.filterwarnings('ignore')   # Suppress Matplotlib warnings

def load_image_into_numpy_array(path):
    """Load an image from file into a numpy array.

    Puts image into numpy array to feed into tensorflow graph.
    Note that by convention we put it into a numpy array with shape
    (height, width, channels), where channels=3 for RGB.

    Args:
      path: the file path to the image

    Returns:
      uint8 numpy array with shape (img_height, img_width, 3)
    """
    return np.array(Image.open(path))

def load_images_path(images_dir):
    images_path_list = []

    images_filename_list =  os.listdir(images_dir)
    for img_path in images_filename_list:
        if img_path.endswith(".jpg") == True:
            img_path = os.path.join('%s/%s' % (images_dir, img_path))
            images_path_list.append(img_path)

    return images_path_list

IMAGE_PATHS = load_images_path(PATH_TO_IMAGES)

for image_path in IMAGE_PATHS:

    print('Running inference for {}... '.format(image_path), end='')

    image_np = load_image_into_numpy_array(image_path)

    # Things to try:
    # Flip horizontally
    # image_np = np.fliplr(image_np).copy()

    # Convert image to grayscale
    # image_np = np.tile(
    #     np.mean(image_np, 2, keepdims=True), (1, 1, 3)).astype(np.uint8)

    # The input needs to be a tensor, convert it using `tf.convert_to_tensor`.
    input_tensor = tf.convert_to_tensor(image_np)
    # The model expects a batch of images, so add an axis with `tf.newaxis`.
    input_tensor = input_tensor[tf.newaxis, ...]

    # input_tensor = np.expand_dims(image_np, 0)
    detections = detect_fn(input_tensor)

    # All outputs are batches tensors.
    # Convert to numpy arrays, and take index [0] to remove the batch dimension.
    # We're only interested in the first num_detections.
    num_detections = int(detections.pop('num_detections'))
    detections = {key: value[0, :num_detections].numpy()
                   for key, value in detections.items()}
    detections['num_detections'] = num_detections

    # detection_classes should be ints.
    detections['detection_classes'] = detections['detection_classes'].astype(np.int64)

    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
          image_np_with_detections,
          detections['detection_boxes'],
          detections['detection_classes'],
          detections['detection_scores'],
          category_index,
          use_normalized_coordinates=True,
          max_boxes_to_draw=200,
          min_score_thresh=.30,
          agnostic_mode=False)

    plt.figure()
    # plt.imshow(image_np_with_detections)
    image_filename = os.path.join(PATH_TO_INFERENCE_RESULT, os.path.basename(image_path))
    plt.imsave(image_filename, image_np_with_detections)
    print('Done')
# plt.show()

# sphinx_gallery_thumbnail_number = 2
AI 代码解读
  • 结果展示

raccoon-15

raccoon-1

raccoon-28

raccoon-182

以上就是一个完整的基于TF2 OD API自定义物体检测器的完整操作流程。

10. 总结

​ 推理结果中仍然有同一个物体被框选2次的情况,需要调节NVS进一步优化。除此之外,还可以尝试使用不同的模型,例如SSD等,选择出效果最优的训练模型。

参考资料:

  • 作者简介:关注AIoT领域的嵌入式开发一枚
  • 本文由机器未来原创,首发在CSDN
  • 订阅专栏:从零开始玩转物体检测系列
  • 专栏计划:接下来会逐步发布跨入人工智能的系列博文,尽情期待

    • 14天快速入门Python系列
    • 快速入门Python数据科学系列
    • 人工智能开发环境搭建系列
    • 机器学习系列
    • 从零玩转物体检测系列
    • 自动驾驶物体检测系列
    • ......
  • 💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞

**源代码及数据集免费获取方式:
点赞、关注、评论区留言,博主顺着评论发送下载链接**

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
1
1
55
分享
相关文章
自学记录鸿蒙API 13:实现多目标识别Object Detection
多目标识别技术广泛应用于动物识别、智能相册分类和工业检测等领域。本文通过学习HarmonyOS的Object Detection API(API 13),详细介绍了如何实现一个多目标识别应用,涵盖从项目初始化、核心功能实现到用户界面设计的全过程。重点探讨了目标类别识别、边界框生成、高精度置信度等关键功能,并分享了性能优化与功能扩展的经验。最后,作者总结了学习心得,并展望了未来结合语音助手等创新应用的可能性。如果你对多目标识别感兴趣,不妨从基础功能开始,逐步实现自己的创意。
209 60
深入浅出:使用Node.js构建RESTful API
在这个数字时代,API已成为软件开发的基石之一。本文旨在引导初学者通过Node.js和Express框架快速搭建一个功能完备的RESTful API。我们将从零开始,逐步深入,不仅涉及代码编写,还包括设计原则、最佳实践及调试技巧。无论你是初探后端开发,还是希望扩展你的技术栈,这篇文章都将是你的理想指南。
自学记录HarmonyOS Next DRM API 13:构建安全的数字内容保护系统
在完成HarmonyOS Camera API开发后,我深入研究了数字版权管理(DRM)技术。最新DRM API 13提供了强大的工具,用于保护数字内容的安全传输和使用。通过学习该API的核心功能,如获取许可证、解密内容和管理权限,我实现了一个简单的数字视频保护系统。该系统包括初始化DRM模块、获取许可证、解密视频并播放。此外,我还配置了开发环境并实现了界面布局。未来,随着数字版权保护需求的增加,DRM技术将更加重要。如果你对这一领域感兴趣,欢迎一起探索和进步。
86 18
自学记录鸿蒙 API 13:骨骼点检测应用Core Vision Skeleton Detection
骨骼点检测技术能够从图片中识别出人体的关键骨骼点位置,如头部、肩部、手肘等,广泛应用于运动健身指导、游戏交互、医疗辅助、安全监控等领域。我决定深入学习HarmonyOS Next API 13中的Skeleton Detection API,并开发一个简单的骨骼点检测应用。通过理解API核心功能、项目初始化与配置、实现检测功能、构建用户界面,以及性能优化和功能扩展,逐步实现这一技术的应用。未来计划将其应用于健身指导和智能监控领域,探索与其他AI能力的结合,开发更智能的解决方案。如果你也对骨骼点检测感兴趣,不妨一起进步!
168 9
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发作为连接用户与数据的桥梁,扮演着至关重要的角色。本文将引导您步入Node.js的奇妙世界,通过实践操作,掌握如何使用这一强大的JavaScript运行时环境构建高效、可扩展的RESTful API。我们将一同探索Express框架的使用,学习如何设计API端点,处理数据请求,并实现身份验证机制,最终部署我们的成果到云服务器上。无论您是初学者还是有一定基础的开发者,这篇文章都将为您打开一扇通往后端开发深层知识的大门。
61 12
深入浅出:构建高效RESTful API的最佳实践
在数字化时代,API已成为连接不同软件和服务的桥梁。本文将带你深入了解如何设计和维护一个高效、可扩展且安全的RESTful API。我们将从基础概念出发,逐步深入到高级技巧,让你能够掌握创建优质API的关键要素。无论你是初学者还是有经验的开发者,这篇文章都将为你提供实用的指导和启示。让我们一起探索API设计的奥秘,打造出色的后端服务吧!
构建高效RESTful API的后端实践指南####
本文将深入探讨如何设计并实现一个高效、可扩展且易于维护的RESTful API。不同于传统的摘要概述,本节将直接以行动指南的形式,列出构建RESTful API时必须遵循的核心原则与最佳实践,旨在为开发者提供一套直接可行的实施框架,快速提升API设计与开发能力。 ####
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发如同一座灯塔,指引着数据的海洋。本文将带你航行在Node.js的海域,探索如何从一张白纸到完成一个功能完备的RESTful API。我们将一起学习如何搭建开发环境、设计API结构、处理数据请求与响应,以及实现数据库交互。准备好了吗?启航吧!
构建高效RESTful API:后端开发的艺术与实践####
在现代软件开发的浩瀚星空中,RESTful API如同一座桥梁,连接着前端世界的绚丽多彩与后端逻辑的深邃复杂。本文旨在探讨如何精心打造一款既高效又易于维护的RESTful API,通过深入浅出的方式,剖析其设计原则、实现技巧及最佳实践,为后端开发者提供一份实用的指南。我们不深入晦涩的理论,只聚焦于那些能够即刻提升API品质与开发效率的关键点,让你的API在众多服务中脱颖而出。 ####
43 0
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等