干货 | 一文搞懂全链路监控:方案概述与比较(上)

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 干货 | 一文搞懂全链路监控:方案概述与比较

问题背景

随着微服务架构的流行,服务按照不同的维度进行拆分,一次请求往往需要涉及到多个服务。互联网应用构建在不同的软件模块集上,这些软件模块,有可能是由不同的团队开发、可能使用不同的编程语言来实现、有可能布在了几千台服务器,横跨多个不同的数据中心。因此,就需要一些可以帮助理解系统行为、用于分析性能问题的工具,以便发生故障的时候,能够快速定位和解决问题。


全链路监控组件就在这样的问题背景下产生了。最出名的是谷歌公开的论文提到的 Google Dapper。想要在这个上下文中理解分布式系统的行为,就需要监控那些横跨了不同的应用、不同的服务器之间的关联动作


所以,在复杂的微服务架构系统中,几乎每一个前端请求都会形成一个复杂的分布式服务调用链路。一个请求完整调用链可能如下图所示:

image.png

那么在业务规模不断增大、服务不断增多以及频繁变更的情况下,面对复杂的调用链路就带来一系列问题:

  1. 如何快速发现问题?
  2. 如何判断故障影响范围?
  3. 如何梳理服务依赖以及依赖的合理性?
  4. 如何分析链路性能问题以及实时容量规划?

同时我们会关注在请求处理期间各个调用的各项性能指标,比如:吞吐量(TPS)、响应时间及错误记录等。

  1. 吞吐量,根据拓扑可计算相应组件、平台、物理设备的实时吞吐量。
  2. 响应时间,包括整体调用的响应时间和各个服务的响应时间等。
  3. 错误记录,根据服务返回统计单位时间异常次数。

全链路性能监控 从整体维度到局部维度展示各项指标,将跨应用的所有调用链性能信息集中展现,可方便度量整体和局部性能,并且方便找到故障产生的源头,生产上可极大缩短故障排除时间。


有了全链路监控工具,我们能够达到:

  1. 请求链路追踪,故障快速定位:可以通过调用链结合业务日志快速定位错误信息。
  2. 可视化:各个阶段耗时,进行性能分析。
  3. 依赖优化:各个调用环节的可用性、梳理服务依赖关系以及优化。
  4. 数据分析,优化链路:可以得到用户的行为路径,汇总分析应用在很多业务场景。


1
 

目标要求


如上所述,那么我们选择全链路监控组件有哪些目标要求呢?Google Dapper中也提到了,总结如下:


1. 探针的性能消耗

APM组件服务的影响应该做到足够小。服务调用埋点本身会带来性能损耗,这就需要调用跟踪的低损耗,实际中还会通过配置采样率的方式,选择一部分请求去分析请求路径。在一些高度优化过的服务,即使一点点损耗也会很容易察觉到,而且有可能迫使在线服务的部署团队不得不将跟踪系统关停。


2. 代码的侵入性

即也作为业务组件,应当尽可能少入侵或者无入侵其他业务系统,对于使用方透明,减少开发人员的负担。


对于应用的程序员来说,是不需要知道有跟踪系统这回事的。如果一个跟踪系统想生效,就必须需要依赖应用的开发者主动配合,那么这个跟踪系统也太脆弱了,往往由于跟踪系统在应用中植入代码的bug或疏忽导致应用出问题,这样才是无法满足对跟踪系统“无所不在的部署”这个需求。


3. 可扩展性

一个优秀的调用跟踪系统必须支持分布式部署,具备良好的可扩展性。能够支持的组件越多当然越好。或者提供便捷的插件开发API,对于一些没有监控到的组件,应用开发者也可以自行扩展。


4. 数据的分析

数据的分析要快 ,分析的维度尽可能多。跟踪系统能提供足够快的信息反馈,就可以对生产环境下的异常状况做出快速反应。分析的全面,能够避免二次开发。

2 

功能模块

一般的全链路监控系统,大致可分为四大功能模块:


1.埋点与生成日志

埋点即系统在当前节点的上下文信息,可以分为 客户端埋点、服务端埋点,以及客户端和服务端双向型埋点。埋点日志通常要包含以下内容traceId、spanId、调用的开始时间,协议类型、调用方ip和端口,请求的服务名、调用耗时,调用结果,异常信息等,同时预留可扩展字段,为下一步扩展做准备;

  • 不能造成性能负担:一个价值未被验证,却会影响性能的东西,是很难在公司推广的!
  • 因为要写log,业务QPS越高,性能影响越重。通过采样和异步log解决。

2.收集和存储日志

主要支持分布式日志采集的方案,同时增加MQ作为缓冲;

  • 每个机器上有一个 deamon 做日志收集,业务进程把自己的Trace发到daemon,daemon把收集Trace往上一级发送;
  • 多级的collector,类似pub/sub架构,可以负载均衡;
  • 对聚合的数据进行 实时分析和离线存储;
  • 离线分析 需要将同一条调用链的日志汇总在一起;

3.分析和统计调用链路数据,以及时效性

调用链跟踪分析:把同一TraceID的Span收集起来,按时间排序就是timeline。把ParentID串起来就是调用栈。

抛异常或者超时,在日志里打印TraceID。利用TraceID查询调用链情况,定位问题。

依赖度量:

  • 强依赖:调用失败会直接中断主流程
  • 高度依赖:一次链路中调用某个依赖的几率高
  • 频繁依赖:一次链路调用同一个依赖的次数多

离线分析:按TraceID汇总,通过Span的ID和ParentID还原调用关系,分析链路形态。

实时分析:对单条日志直接分析,不做汇总,重组。得到当前QPS,延迟。

4.展现以及决策支持

3 

Google Dapper


3.1 Span

基本工作单元,一次链路调用(可以是 RPC,DB 等没有特定的限制)创建一个 span,通过一个64位 ID 标识它,uuid 较为方便,span 中还有其他的数据,例如描述信息,时间戳,key-value对的(Annotation)tag信息,parent_id 等,其中 parent-id 可以表示 span 调用链路来源。

image.png

上图说明了span在一次大的跟踪过程中是什么样的。Dapper记录了span名称,以及每个span的ID和父ID,以重建在一次追踪过程中不同span之间的关系。如果一个span没有父ID被称为root span。所有span都挂在一个特定的跟踪上,也共用一个跟踪id


Span数据结构

type Span struct {
    TraceID    int64 // 用于标示一次完整的请求id
    Name       string
    ID         int64 // 当前这次调用span_id
    ParentID   int64 // 上层服务的调用span_id  最上层服务parent_id为null
    Annotation []Annotation // 用于标记的时间戳
    Debug      bool
}

3.2 Trace


类似于 树结构的Span集合,表示一次完整的跟踪,从请求到服务器开始,服务器返回response结束,跟踪每次 rpc 调用的耗时,存在唯一标识trace_id。比如:你运行的分布式大数据存储一次 Trace 就由你的一次请求组成。
image.png

每种颜色的note标注了一个span,一条链路通过TraceId唯一标识,Span标识发起的请求信息。树节点是整个架构的基本单元,而每一个节点又是对span的引用。节点之间的连线表示的span和它的父span直接的关系。虽然span在日志文件中只是简单的代表span的开始和结束时间,他们在整个树形结构中却是相对独立的。


3.3 Annotation


注解,用来记录请求特定事件相关信息(例如时间),一个span中会有多个annotation注解描述。通常包含四个注解信息:

(1) cs:Client Start,表示客户端发起请求

(2) sr:Server Receive,表示服务端收到请求

(3) ss:Server Send,表示服务端完成处理,并将结果发送给客户端

(4) cr:Client Received,表示客户端获取到服务端返回信息

Annotation数据结构

type Annotation struct {
    Timestamp int64
    Value     string
    Host      Endpoint
    Duration  int32
}

3.4 调用示例


1. 请求调用示例

  1. 当用户发起一个请求时,首先到达前端A服务,然后分别对B服务和C服务进行RPC调用;
  2. B服务处理完给A做出响应,但是C服务还需要和后端的D服务和E服务交互之后再返还给A服务,最后由A服务来响应用户的请求;

    image.png

2. 调用过程追踪

整个调用过程追踪:

  1. 请求到来生成一个全局TraceID,通过TraceID可以串联起整个调用链,一个TraceID代表一次请求。
  2. 除了TraceID外,还需要SpanID用于记录调用父子关系。每个服务会记录下parent id和span id,通过他们可以组织一次完整调用链的父子关系。
  3. 一个没有parent id的span成为root span,可以看成调用链入口。
  4. 所有这些ID可用全局唯一的64位整数表示;
  5. 整个调用过程中每个请求都要透传TraceID和SpanID。
  6. 每个服务将该次请求附带的TraceID和附带的SpanID作为parent id记录下,并且将自己生成的SpanID也记录下。
  7. 要查看某次完整的调用则 只要根据TraceID查出所有调用记录,然后通过parent id和span id组织起整个调用父子关系。

image.png

3. 调用链核心工作

  1. 调用链数据生成,对整个调用过程的所有应用进行埋点并输出日志。
  2. 调用链数据采集,对各个应用中的日志数据进行采集。
  3. 调用链数据存储及查询,对采集到的数据进行存储,由于日志数据量一般都很大,不仅要能对其存储,还需要能提供快速查询。
  4. 指标运算、存储及查询,对采集到的日志数据进行各种指标运算,将运算结果保存起来。
  5. 告警功能,提供各种阀值警告功能。


4. 整体部署架构

image.png

  1. 整体部署架构
  2. 通过AGENT生成调用链日志。
  3. 通过logstash采集日志到kafka。
  4. kafka负责提供数据给下游消费。
  5. storm计算汇聚指标结果并落到es。
  6. storm抽取trace数据并落到es,这是为了提供比较复杂的查询。比如通过时间维度查询调用链,可以很快查询出所有符合的traceID,根据这些traceID再去 Hbase 查数据就快了
  7. logstash将kafka原始数据拉取到hbase中。hbase的rowkey为traceID,根据traceID查询是很快的
相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
传感器 监控 安全
闭环反馈系统原理概述
有时,为了获得系统的一致性和稳定性并产生控制系统的期望输出,我们使用反馈回路。反馈只不过是输出信号的一部分。这个概念在控制系统中最常见和最重要,以实现输出的稳定性。根据反馈连接,控制系统分为两种类型。它们是开环控制系统和闭环控制系统。下面简单介绍下闭环反馈系统。
3471 0
闭环反馈系统原理概述
|
存储 数据采集 Prometheus
【云原生监控系列第一篇】一文详解Prometheus普罗米修斯监控系统(山前前后各有风景,有风无风都很自由)(一)
【云原生监控系列第一篇】一文详解Prometheus普罗米修斯监控系统(山前前后各有风景,有风无风都很自由)(一)
1757 0
【云原生监控系列第一篇】一文详解Prometheus普罗米修斯监控系统(山前前后各有风景,有风无风都很自由)(一)
|
存储 数据采集 人工智能
如何设计一个监控平台(上篇)
在大型分布式微服务场景下,各个服务版本快速迭代,各类业务规模不断膨胀,同时监控的场景也在不断的发生变化,线上故障随时可能发生,各个平台错综复杂,如何保证线上服务稳定运行,同时提升运维效率,降低运维成本成了监控平台的挑战。
如何设计一个监控平台(上篇)
|
5月前
|
监控 API 开发者
分布式链路监控系统问题之ASM的开发体验被认为是噩梦般的问题如何解决
分布式链路监控系统问题之ASM的开发体验被认为是噩梦般的问题如何解决
|
8月前
|
存储 Java 分布式数据库
|
BI Sentinel
最新发布!阿里巴巴内部实战AlibabaSentinel高并发流量治理手册
为什么要使用Sentinel? Sentinel使用简单、配置灵活,可将Sentinel的动态数据源接口与配置中心结合使用,动态地改变流量规则。Sentinel提供的流量控制功能有限流、熔断、系统自适应、授权等。笔者当时使用了熔断和系统自适应功能应对突增流量导致服务雪崩的问题,同时使用限流功能并结合信号量隔离、匀速限流效果控制器,应对内部定时任务瞬时高并发调用某服务接口的问题。
140 0
最新发布!阿里巴巴内部实战AlibabaSentinel高并发流量治理手册
|
弹性计算 运维 监控
【最佳实践】《微服务架构日志采集运维管理》手把手实操步骤与常见问题
根据阿里云《微服务架构日志采集运维管理》最佳实践文档实践步骤复现应用搭建的过程,同时总结归纳部分在应用搭载过程中遇见的问题与解决方案。
|
Prometheus 监控 Cloud Native
【分布式技术专题】「架构实践于案例分析」盘点一下分布式模式下的服务治理和监控优化方案
【分布式技术专题】「架构实践于案例分析」盘点一下分布式模式下的服务治理和监控优化方案
263 0
【分布式技术专题】「架构实践于案例分析」盘点一下分布式模式下的服务治理和监控优化方案
《“静态调用链路发现“在APM中的应用场景分析及实践探索》电子版地址
“静态调用链路发现“在APM中的应用场景分析及实践探索
87 0
《“静态调用链路发现“在APM中的应用场景分析及实践探索》电子版地址
|
运维 前端开发 数据可视化
如何快速搭建全链路平台,展示服务拓扑以分析性能?
如何快速搭建全链路平台,展示服务拓扑以分析性能?
169 0
如何快速搭建全链路平台,展示服务拓扑以分析性能?